NetWorker V7.5

Disaster Recovery Guide

Edition June 2009
Comments… Suggestions… Corrections…

The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: manuals@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2000

To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the regulations of a quality management system which complies with the requirements of the standard DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © Fujitsu Technology Solutions 2009.

All rights reserved.

Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

Microsoft®, Microsoft Windows®, and Windows Server® are U.S. registered trademarks of Microsoft Corporation.

HP-UX® Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on all HP 9000 computers are Open Group UNIX® 95 branded products.

AMD Opteron(TM) is the trademark owned by Advanced Micro Devices, Inc.

Intel®, Intel Itanium®, Intel Pentium®, and Intel Xeon™ are trademarks or registered trademarks of IntelCorporation or its subsidiaries in the United States and other countries.

EMC® and NetWorker® are trademarks of EMC Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

NetApp, Data ONTAP, SnapDrive, SnapManager, SnapMirror, SnapRestore, and WAFL are registered trademarks and Network Appliance Inc. in the U.S. and other countries.

Fujitsu and the Fujitsu Logo are trademarks of Fujitsu Limited.

Product Number: 0903302
Preface

Chapter 1 Introduction to NetWorker Disaster Recovery
Supported operating systems ... 10
NetWorker server recovery defined ... 10

Chapter 2 Planning and Preparing for a NetWorker Server Recovery
Backing up data .. 12
 Gathering the key information ... 12
 Hardware information .. 12
 Software information ... 13
Preparing for NetWorker server recovery .. 13
 Task 1: Perform a full backup of the backup server 13
 Task 2: Create a new group and place all clients in the new group 13
 Task 3: Replace hardware and reinstall/upgrade the operating system 14
 Task 4: Recover your NetWorker server implementation 14
Troubleshooting a NetWorker server recovery .. 14
 Task 1: Obtaining the bootstrap SSID .. 14
 Task 2: Shutting down NetWorker and renaming the media database ... 15
 Task 3: Restarting NetWorker ... 16
 Task 4: Configuring the backup media ... 16

Chapter 3 NetWorker Server Disaster Recovery Roadmaps
Before beginning ... 20
NetWorker server movement .. 20
NetWorker server recovery .. 20
 NetWorker server recovery in a UNIX environment 20
 NetWorker server recovery in a Windows environment 21
 NetWorker server recovery in a NetWare environment 21
 NetWorker server recovery in a MAC OSX environment 21
NetWorker Management Console server recovery 22
Troubleshooting a NetWorker server move .. 22
 How to troubleshoot a NetWorker server move 22
 Failure of the nsrck -L7 command while using a server as a client of new
 server .. 23
 Failure of the nsrck -L7 command when moving a server 24
 Moving a NetWorker server to another server with a different hostname 26
Preface

This guide is part of the Fujitsu NetWorker® documentation set. It also comprises the EMC² NetWorker descriptions for other operating systems, such as Microsoft® Windows®. For more information on available documentation, see section “Related documentation” on page 5.

Audience

This document is intended for use by the following audiences:

◆ System administrators who perform backup and recovery procedures, and maintain the safety of the data located over a network.
◆ Managers who want to learn how to implement a disaster recovery program.
◆ Users responsible for implementing disaster recovery plans and procedures.

Organization

This guide is organized into these chapters:

◆ Chapter 1, “Introduction to NetWorker Disaster Recovery”
◆ Chapter 2, “Planning and Preparing for a NetWorker Server Recovery”
◆ Chapter 3, “NetWorker Server Disaster Recovery Roadmaps”
◆ Chapter 4, “Moving a NetWorker Server”
◆ Chapter 5, “Recovering a NetWorker Server”
◆ Chapter 6, “Recovering a NetWorker Client and Storage Node”
◆ Chapter 7, “Recovering the NetWorker Management Console Server”

Related documentation

Related documents include:

◆ Administrator’s Guide
◆ Command Reference Guide
◆ Error Message Guide
◆ Release Notice

Conventions used in this document

This guide uses the following conventions for special notices.

Note: A note presents information that is important, but not hazard-related.

CAUTION

A caution contains information essential to avoid data loss or damage to the system or equipment.
IMPORTANT

An important notice contains information essential to operation of the software.

Typographical conventions
The following type style conventions are used in this document:

Normal
Used in running (nonprocedural) text for:
• Names of interface elements (such as names of windows, dialog boxes, buttons, fields, and menus)
• Names of resources, attributes, pools, Boolean expressions, buttons, DQL statements, keywords, clauses, environment variables, functions, utilities
• URLs, pathnames, filenames, directory names, computer names, filenames, links, groups, service keys, file systems, notifications

Bold
Used in running (nonprocedural) text for:
• Names of commands, daemons, options, programs, processes, services, applications, utilities, kernels, notifications, system calls, man pages
Used in procedures for:
• Names of interface elements (such as names of windows, dialog boxes, buttons, fields, and menus)
• What user specifically selects, clicks, presses, or types

Italic
Used in all text (including procedures) for:
• Full titles of publications referenced in text
• Emphasis (for example a new term)
• Variables

Courier
Used for:
• System output, such as an error message or script
• URLs, complete paths, filenames, prompts, and syntax when shown outside of running text

Courier bold
Used for:
• Specific user input (such as commands)

Courier italic
Used in procedures for:
• Variables on command line
• User input variables

< >
Angle brackets enclose parameter or variable values supplied by the user

[]
Square brackets enclose optional values

| |
Vertical bar indicates alternate selections - the bar means “or”

{}
Braces indicate content that you must specify (that is, x or y or z)

...
Ellipses indicate nonessential information omitted from the example

Where to get help
Company, product, and technical information can be obtained as follows.
Information and services
Information and documentation on Fujitsu NetWorker products can be obtained as follows:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product information, documentation and downloads</td>
<td>http://ts.fujitsu.com/networker</td>
</tr>
<tr>
<td>NetWorker manuals</td>
<td>http://manuals.ts.fujitsu.com</td>
</tr>
<tr>
<td></td>
<td>Follow the links Storage solutions - Storage software.</td>
</tr>
<tr>
<td>Release notices</td>
<td>http://manuals.ts.fujitsu.com</td>
</tr>
<tr>
<td></td>
<td>Follow the links Storage solutions - Storage software.</td>
</tr>
<tr>
<td>Software patches</td>
<td>http://ts.fujitsu.com/networker</td>
</tr>
<tr>
<td></td>
<td>Follow the links NetWorker - Networker patches.</td>
</tr>
</tbody>
</table>

Customer service

<table>
<thead>
<tr>
<th>Resource</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetWorker training</td>
<td>technical-training@ts.fujitsu.com</td>
</tr>
<tr>
<td>Support phone</td>
<td>+49-180-54040</td>
</tr>
<tr>
<td>Support fax</td>
<td>+49-180-5336779</td>
</tr>
</tbody>
</table>

Technical support
The Support section of the Fujitsu Technology Solutions web site at http://ts.fujitsu.com/services provides links with contact information and information about available support programs.

If you have an active support agreement, you may contact your service provider.

If you do not have an active support agreement, contact your Fujitsu Technology Solutions sales representative to purchase a service contract or updates.

Resources for EMC NetWorker products
Information and documentation about EMC NetWorker products can be obtained as follows:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product information</td>
<td>http://www.emc.com</td>
</tr>
<tr>
<td>Documentation, downloads and patches (requires personal account)</td>
<td>http://powerlink.emc.com</td>
</tr>
</tbody>
</table>

Your comments
Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Please send your opinion of this document to:
manuals@ts.fujitsu.com

If you have issues, comments, or questions about specific information or procedures, please include the title and, if available, the part number, the revision (for example, A01), the page numbers, and any other details that will help us locate the subject you are addressing.
The NetWorker Recovery Guide provides step-by-step instructions for recovering from a disaster on supported NetWorker client, server, and storage node platforms.

This chapter includes these sections:

- Supported operating systems ... 10
- NetWorker server recovery defined .. 10
Supported operating systems

This guide provides disaster recovery information for NetWorker® software on these operating systems:

- Linux
- Mac OS X
- Microsoft Windows
- NetWare
- UNIX

NetWorker server recovery defined

For the purpose of this guide, a disaster is any situation in which the day-to-day access to data (for example, working files, software programs, or system files) is disrupted. A disaster also can damage network components, such as data, devices, hardware, media, and software.

A disaster can result from any of these situations:

- Computer viruses that can corrupt data
- Hardware and software failures
- Infrastructure interruptions, inconsistencies, or loss of services, such as communication or network connections

The degree of loss during a disaster can range from one or more files to an entire computer system. The severity of the disaster determines the procedures necessary to recover data.
This chapter includes these sections on planning and preparing to recover a NetWorker server:

- Backing up data .. 12
- Preparing for NetWorker server recovery 13
- Troubleshooting a NetWorker server recovery 14

Note: If you are viewing the online version of this guide, print a hard copy and store it in a safe location.
Back up data

Back up important data on a scheduled basis. The more time and effort invested in incorporating, maintaining, and testing a backup solution, the better prepared you are in the event of a disaster.

Ensure that servers are backed up regularly as part of a backup group. Otherwise, a “bootstrap” is not saved (backups performed by using the command line or the NetWorker User program do not save the NetWorker server bootstrap). Use a local backup device on the server to back up the server’s bootstrap.

Always perform a scheduled backup of the NetWorker server after upgrading to a new version of NetWorker software. This ensures that an upgraded version of the bootstrap is saved. Bootstrap backups should also be performed before upgrading.

The bootstrap information can be printed from the savegrp.log file, which is located in the `nsr` directory. The *NetWorker 7.5 Administrator’s Guide* provides instructions on how to configure the NetWorker software to send bootstrap information directly to a printer or to a specified email address. If the bootstrap is backed up to a pool other than the preconfigured pools, save the name of the pool along with the bootstrap.

Note: Index backups are not included in bootstrap backups.

Maintain a copy of this information in a safe location for easy access by those assigned to perform disaster recovery. Consider maintaining a copy of this information in both an onsite and offsite location.

Having the correct information handy in case a disaster occurs is a key element in recovering from a disaster as quickly as possible.

Gathering the key information

Maintain accurate records for each hardware, software, network, device, and media component.

Hardware information

Maintain this computer hardware information up-to-date:

- File-system configuration
- Fully qualified domain names, IP addresses, and hostnames
- For Domain Name System (DNS) clients, maintain the DNS host’s Internet address and hostname
- Hard drive configuration
- Media device names
- Hardware vendor contact information and contract number
- Configuration information for each piece of hardware, both active and inactive, within the organization or organizational site
Software information

Maintain this computer software information up-to-date:

- Copies of the original operating system media and patches (and where they are located)
- Software licenses, or enabler and authorization codes for EMC NetWorker
- Software vendor contact information and contract number
- The operating system version and patches installed
- Operating system configuration
- Emergency media that can be used to recover a computer if a disaster occurs
- NetWorker bootstrap information for each NetWorker server
- Kernel configuration and location
- Device drivers
- A list of any Windows volume mount points, if using EMC NetWorker for Microsoft Windows operating systems

Preparing for NetWorker server recovery

This section describes the steps required to prepare for the recovery of a NetWorker server. This is useful if you are making changes to the operating system, hardware, or are performing an upgrade. The steps include:

- “Task 1: Perform a full backup of the backup server” on page 13
- “Task 2: Create a new group and place all clients in the new group” on page 13
- “Task 3: Replace hardware and reinstall/upgrade the operating system” on page 14
- “Task 4: Recover your NetWorker server implementation” on page 14

Task 1: Perform a full backup of the backup server

Perform a full backup of the backup server (BK_SERV) to generate the bootstrap information. Run this command for the full backup:

```
savegrp -l full -c BK_SERV -G Group_name
```

Where `group_name` identifies the group containing the server with the save set called ALL.

Note: Print this information and keep it handy. It is needed during recovery operations.

Task 2: Create a new group and place all clients in the new group

Create a new group and place all the clients in that new group by performing the following steps:

1. Create the new group.
2. Once the new group is created, place all of your clients into that group, and then run this command:

```
savegrp -O -l full BK_SERV -G Group_name
```

Where `Group_name` identifies the group created in step 1.
This command performs a full backup of all client indexes, belonging to the new group, onto the same tape. It also creates bootstrap information which should be kept close at hand.

Task 3: Replace hardware and reinstall/upgrade the operating system

Identify the defective or suspect hardware and replace it as required.

Note: If you are performing a disaster recovery, install the same version of NetWorker with the same patch level and in the exact same location where it used to be installed. Ensure that the server has the exact same name it used to be configured in NetWorker before the changes. In other words, if it was defined a fully qualified name then ensure the new installation or the new server is configured with the same fully qualified name. The same conditions apply to the devices short name.

Task 4: Recover your NetWorker server implementation

Chapter 5, “Recovering a NetWorker Server,” provides instructions on recovering the NetWorker server.

Troubleshooting a NetWorker server recovery

This section includes these tasks:

- “Task 1: Obtaining the bootstrap SSID” on page 14
- “Task 2: Shutting down NetWorker and renaming the media database” on page 15
- “Task 3: Restarting NetWorker” on page 16
- “Task 4: Configuring the backup media” on page 16

Note: Know the bootstrap SSID and the volume containing that bootstrap before starting with the disaster recovery procedure.

Task 1: Obtaining the bootstrap SSID

To obtain the bootstrap SSID:

1. Verify that the bootstrap SSID was previously recorded. This information can be obtained from the Bootstrap notifications information, which is usually printed out or emailed to the administrator.

2. If the bootstrap information is unavailable, locate the bootstrap SSID and the volume containing that bootstrap SSID in:
 - ..\sr\logs\messages file
 - ..\sr\logs\savegrp.log

 If the media database is not lost and the volumes list is there then run:

 `mminfo -av -B -s server_name`

 This lists all the bootstrap SSID available in the media database and the volume name containing the bootstrap SSID by tracing the daemon.log file line-by-line back to the last good bootstrap.

 This allows you to locate the volume containing the required bootstrap.
3. Find the bootstrap SSID.

If you know the volume that contains the bootstrap information, but the bootstrap SSID is unknown, run this command:

```bash
scanner -B device_name
```

Note: The `device_name` could be: `\\Tape0`, `\\Tape1`, `/dev/rmt/0cbn`, `/dev/rmt/1cbn`, depending on the operating system in use, the number of devices you have, and device you configured within NetWorker. Ensure you use the correct letter case; these commands are case-sensitive.

This scanner command will locate the latest bootstrap SSID available on that volume.

Now start with a fresh database, especially if there is a database corruption. This is to avoid additional corruption or problems in the future.

Task 2: Shutting down NetWorker and renaming the media database

To rename the media database:

1. Shut down NetWorker services as indicated in Table 1 on page 15.

<table>
<thead>
<tr>
<th>If you are using this operating system...</th>
<th>Use this procedure...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>The NetWorker services are: NetWorker Backup and Recovery server (<code>nsrd</code>) and NetWorker Remote Exec Service (<code>nsreced</code>). To stop the services on Windows run these commands:</td>
</tr>
<tr>
<td></td>
<td>• <code>net stop nsreced</code></td>
</tr>
<tr>
<td></td>
<td>• <code>net stop nsrd</code></td>
</tr>
<tr>
<td>UNIX</td>
<td>The NetWorker daemons are: <code>nsrd</code>, <code>nsrmmdbd</code>, <code>nsrindexd</code>, <code>nsrjobd</code>, <code>nsrlcpd</code> (if jukebox is configured), <code>nsrmmgd</code>, <code>nsrmmd</code>, <code>nsreced</code>. To stop the NetWorker daemons, run the <code>Nsr_shutdown</code> command.</td>
</tr>
</tbody>
</table>

2. Rename the `mm` directory to `mm.old`:
 a. In UNIX it is located in `/nsr/mm`.
 b. In Windows it is located in `<NetWorker_install_dir>\mm`.

3. Rename the `index` directory to `index.old`. On UNIX, it is located in `/nsr/index` while it is located in `<NetWorker_install_dir>\index` on Windows.
Task 3: Restarting NetWorker

Restart NetWorker services again as indicated in Table 2 on page 16.

Table 2 Restarting NetWorker services

<table>
<thead>
<tr>
<th>If you are using this operating system...</th>
<th>Use this procedure...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>The NetWorker services are: NetWorker Backup and Recovery server (nsrd) and NetWorker Remote Exec Service (nsrexecd). To start the services on Windows run these commands:</td>
</tr>
<tr>
<td></td>
<td>• net start nsrexecd</td>
</tr>
<tr>
<td></td>
<td>• net start nsrd</td>
</tr>
<tr>
<td>UNIX</td>
<td>The NetWorker daemons are: nsrd, nsrmmdbd, nsrindexd, nsrmmd, nsrexecd. To start the NetWorker daemons, run these commands at the UNIX prompt, in the order specified:</td>
</tr>
<tr>
<td></td>
<td>• nsrexecd</td>
</tr>
<tr>
<td></td>
<td>• nsrd</td>
</tr>
</tbody>
</table>

Task 4: Configuring the backup media

To configure the backup media:

1. Define a tape drive in NetWorker administrators interface. If you have a jukebox and if the jukebox configuration and the devices are still defined in NetWorker, then skip this step. Otherwise, configure one of the tape drives in the jukebox (if you have a jukebox) as a stand-alone device. Do not reconfigure the jukebox; it will waste time. Once everything is recovered you get your jukebox configuration; therefore, it is unnecessary to reconfigure it now manually.

2. Load the appropriate volume (obtained above) in the drive just configured in NetWorker:
 - If the jukebox is configured, then load the volume by using the `nsrjb -ln -s server_name device` command.
 - If you only have a stand-alone device configured then you need to load the volume manually in the drive.

3. Run `mmrecov` command. You will be asked for the bootstrap ID (which was obtained above), the file and the record numbers. If you do not have the file or record numbers, skip them by hitting enter.

4. Now `mmrecov` utility will scan the volume and will start its recovery procedure. Watch the resulting output of this command. It may ask you for another volume (if the bootstrap used is not from a full backup.) If asked for another volume, load the volume manually again in the drive just configured in NetWorker.

 Note: If any errors are indicated contact Fujitsu Technology Solutions Technical Support. If not, and the command completes properly, the `mm` directory and the `res.R` directory are recovered.

5. Shut down NetWorker service (using the steps listed above).
6. Rename the res directory to `res.old`.
8. Start NetWorker services again (using the steps listed above).
9. Run the appropriate command to rebuild the index as indicated in Table 3 on page 17:

<table>
<thead>
<tr>
<th>NetWorker version</th>
<th>Command name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.x, 7.x</td>
<td>nsrck -L7</td>
</tr>
</tbody>
</table>

10. Run this command:

 `nsrim -X`

 If you start the NetWorker user interface, all clients, volumes, and indexes should be available.
This chapter explains the general procedures to follow should it become necessary to recover, or move, a NetWorker server, client, storage node, or NetWorker Management Console. It includes these sections:

- Before beginning ... 20
- NetWorker server movement ... 20
- NetWorker server recovery .. 20
- NetWorker Management Console server recovery 22
- Troubleshooting a NetWorker server move 22
Before beginning

This chapter provides general information on procedures to follow if a disaster occurs. This information also includes links to the remainder of this *NetWorker Recovery Guide*, which provide the detailed recovery procedures required to perform to correct disaster situations.

NetWorker server movement

The steps involved in moving a NetWorker server are dependent on how and where the server is moved. Table 4 lists the move types currently supported and directs you to the appropriate procedure in this guide.

Table 4 Moving a NetWorker server

<table>
<thead>
<tr>
<th>Move type</th>
<th>Description</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Moving and restoring a NetWorker client to another NetWorker server”</td>
<td>page 32</td>
</tr>
<tr>
<td>2</td>
<td>“Moving the NetWorker server to a new operating environment”</td>
<td>page 34</td>
</tr>
<tr>
<td>3</td>
<td>“Moving the NetWorker server to a server with the same hostname”</td>
<td>page 40</td>
</tr>
<tr>
<td>4</td>
<td>“Renaming a NetWorker server”</td>
<td>page 43</td>
</tr>
<tr>
<td>5</td>
<td>“Merging several NetWorker servers onto one NetWorker server”</td>
<td>page 49</td>
</tr>
<tr>
<td>6</td>
<td>“Troubleshooting a NetWorker server move”</td>
<td>page 52</td>
</tr>
<tr>
<td>7</td>
<td>“Troubleshooting client ID issues”</td>
<td>page 52</td>
</tr>
</tbody>
</table>

NetWorker server recovery

This section identifies the various steps involved in recovering a NetWorker server within all supported operating system environments. References to the remainder of this guide are included to ensure that the correct procedures are followed.

NetWorker server recovery in a UNIX environment

Table 5 lists the activities that you must perform to recover a a NetWorker server operating within a UNIX operating system environment.

Table 5 Recovering a UNIX NetWorker server

<table>
<thead>
<tr>
<th>Step</th>
<th>To do this...</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Replace all hardware and operating systems as required.</td>
<td>applicable vendor and OEM documentation.</td>
</tr>
<tr>
<td>2</td>
<td>Recover the NetWorker server.</td>
<td>“Recovering a NetWorker server” on page 56.</td>
</tr>
<tr>
<td>3</td>
<td>Recover the NetWorker client as required.</td>
<td>“Recovering a NetWorker client” on page 85.</td>
</tr>
<tr>
<td>4</td>
<td>Recover the NetWorker storage node as required.</td>
<td>“Recovering a NetWorker storage node” on page 86.</td>
</tr>
</tbody>
</table>
NetWorker server recovery in a Windows environment

Table 6 lists the activities to recover a NetWorker server operating within a Windows operating system environment.

Table 6 Recovering a Windows NetWorker server

<table>
<thead>
<tr>
<th>Step</th>
<th>To do this...</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Replace hardware and the operating system as required.</td>
<td>applicable vendor and OEM documentation.</td>
</tr>
<tr>
<td>2</td>
<td>Recover the NetWorker server.</td>
<td>“Recovering a NetWorker server” on page 56.</td>
</tr>
<tr>
<td>3</td>
<td>Recover the NetWorker client as required.</td>
<td>“Recovering a Windows NetWorker client or storage node” on page 89</td>
</tr>
<tr>
<td>4</td>
<td>Recover the NetWorker storage Node as required.</td>
<td>“Recovering a Windows NetWorker client or storage node” on page 89</td>
</tr>
</tbody>
</table>

NetWorker server recovery in a NetWare environment

Table 7 lists the activities to recover a NetWorker server operating within a NetWare operating system environment.

Table 7 Recovering a NetWare NetWorker server

<table>
<thead>
<tr>
<th>Step</th>
<th>To do this...</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Replace hardware and the operating system as required.</td>
<td>applicable vendor and OEM documentation.</td>
</tr>
<tr>
<td>2</td>
<td>Recover the NetWorker server.</td>
<td>“Recovering a NetWorker server” on page 56.</td>
</tr>
<tr>
<td>3</td>
<td>Recover a replicated NDS partition as required</td>
<td>“Recovering a replicated NDS partition” on page 78</td>
</tr>
</tbody>
</table>

NetWorker server recovery in a MAC OSX environment

Table 8 lists the activities to recover a NetWorker server operating within a MAC OSX operating system environment.

Table 8 Recovering a MAC OSX NetWorker server

<table>
<thead>
<tr>
<th>Step</th>
<th>To do this...</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Replace hardware and the operating system as required.</td>
<td>applicable vendor and OEM documentation.</td>
</tr>
<tr>
<td>2</td>
<td>Recover the NetWorker server.</td>
<td>“Recovering a NetWorker server” on page 56.</td>
</tr>
<tr>
<td>3</td>
<td>Recover the NetWorker client as required.</td>
<td>“NetWorker server recovery in a MAC OSX environment” on page 21</td>
</tr>
</tbody>
</table>
NetWorker Management Console server recovery

Table 9 identifies the various steps involved in recovering a NetWorker Management Console server (NMC) from within UNIX or Windows operating system environment. References to this guide, and related documentation, are included to ensure that the correct procedures are followed.

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complete one of these actions as required:</td>
</tr>
<tr>
<td></td>
<td>a. Reinstall the NetWorker software. The NetWorker Release Notice or, if using an EMC NetWorker host, the appropriate NetWorker Installation Guide for instruction on reinstalling NetWorker software.</td>
</tr>
<tr>
<td></td>
<td>b. Recover the NetWorker software. The recovery procedures provided in Chapter 5, “Recovering a NetWorker Server,”</td>
</tr>
<tr>
<td>2</td>
<td>Complete one of these actions as required:</td>
</tr>
<tr>
<td></td>
<td>a. Reinstall the NMC software. The NetWorker Release Notice or, if using an EMC NetWorker host, the appropriate NetWorker Installation Guide for instructions on reinstalling the NetWorker Management Console software.</td>
</tr>
<tr>
<td></td>
<td>b. Recover the NMC software. The recovery procedures found in this guide.</td>
</tr>
<tr>
<td>3</td>
<td>Recover the NMC server database. “Recovering the console server database” on page 104.</td>
</tr>
</tbody>
</table>

Troubleshooting a NetWorker server move

How to troubleshoot a NetWorker server move

These steps can help to identify problems which may arise during and after moving a NetWorker server:

1. Verify that your operating system and the hardware are supported by the NetWorker version in use.
2. If using a Fujitsu NetWorker server: Verify that the licenses are installed properly on the new server. If using an EMC NetWorker server: Verify that a Host Transfer Affidavit was processed for transferring the old server’s license to the new server.
3. Ensure that, if you changed a new server’s hostname, it resolves forward and reverse lookups properly.
4. Ensure that all new hardware is supported by NetWorker, and properly configured.
5. Ensure that the operating system is up-to-date on patches, especially for tape, SCSI, SAN or network related.
6. Verify that your operating system can connect with all of the appropriate devices.
7. Verify that `nsrck -L7` command does not fail when moving a server and:
 - the old server does not become client of the new server and the new server inherits the old server’s index files and save sets.
Troubleshooting a NetWorker server move

- the old server becomes a client of the new server and the old server continues to use it's indexes and save sets. Additional information is provided in “Failure of the nsrck -L7 command while using a server as a client of new server” on page 23.

Note: The NetWorker command reference documentation contains additional information on the nsrck -L7 command and it’s use.

Failure of the nsrck -L7 command while using a server as a client of new server

In situations where a previous NetWorker server will become a client of a new NetWorker server, give temporary permission to the new NetWorker server to let it recover the previous NetWorker server's save sets (indexes). These are then transferred to the new NetWorker server.

Expectations with this are:

◆ You can have the old NetWorker server as a client to the new NetWorker server.
◆ The new NetWorker server and old NetWorker server will have different client IDs.
◆ You can use Save Set Recover to recover the indexes, or copy the indexes from the old server to the new server using the procedure documented in “Moving the NetWorker server to a new operating environment” on page 34.
◆ Old NetWorker server can still recover its old data to the old NetWorker server's hardware.

The new NetWorker server must be assigned permissions to recover indexes that were previously managed by the old NetWorker server. You can assign permissions through the old NetWorker server's client resource file using NetWorker Administrator.

Assigning permissions through the old NetWorker server's client resource file

Allows save set recovery of client indexes by giving permission to a new server to recover all client index saves, while the old server can remain as a client of the new server.

Upon completion of these procedures, when the new server has recovered all the client file indexes, the old server can continue to be a NetWorker client of the new server. In this way, the old server can still browse its old indexes and recover old data.

Once the resources files have been recovered, placed appropriately, and NetWorker has been restarted:

1. Move the physical media to the recovering server.
2. Run mmrecov to recover the media database and resource files.
3. Stop the NetWorker server and replace the default resource files, with those that were recovered, by copying or moving them from /nsr/res.R to /nsr/res.
4. Restart the NetWorker server.

At this point, instead of running nsrck -L7 to recover the indexes:

 a. Add the new server name to the 'Remote Access' field of the old server's client resource.
 b. Recover indexes to the new server, using save set recovery (you may need, for each client index, to recover multiple save sets starting with the level full and then all level 9 save sets to fully recover an entire index):

```snrk
recover -S ssid_of_client_index
```
5. Run `nsrck -L6` to rebuild the indexes. All old clients indexes are now moved to new server

Note: You may now remove new server from old server's "Remote Access" or leave for additional save set recovers of filesystem data.

“Modify client resource attributes and complete the renaming” on page 48 provides information on how to complete the renaming process, where applicable.

Making an old server a hosts table alias of a new server

Upon completion of these procedures where the new server has recovered all the client file indexes (previously owned by old server), the old server can continue to be a NetWorker client of new server and thus, old server will still be able to browse its old indexes and recover old data.

Perform this procedure to the point where all the resources files have been recovered, placed appropriately and NetWorker has been restarted:

1. Move the physical media to the recovering server.
2. Run the `mmrecov` command to recover the media database and resource files.
3. Stop the NetWorker server.
4. Replace the default resource files with those that were recovered, by copying or moving them from `/nsr/res.R` to `/nsr/res`.
5. Restart NetWorker server.
6. At this point, before running `nsrck -L7` to recover the indexes:

 It is possible to, temporarily, modify the hosts name lookup file (hosts) by inserting the old server_name in front of the new server_name, and run `nsrck -L7` successfully. For example:

   ```
   xxxx.xxxx.xxxx.xxxx old server_name new server_name new server_name.org.com
   ```

 Where the `old server_name` is the name of the client owning the index save sets, returned by `mminfo` command:

   ```
   mminfo -a -q name=bootstrap -r client
   ```

 On UNIX, additionally set the `/etc/nsswitch.conf` to point to the `/etc/hosts` files first

7. Run the `nsrck -L7` command.
8. Once the indexes are recovered return the hosts table. When operating with UNIX you must also return `/etc/nsswitch.conf` back.

Completing the renaming process

“Modify client resource attributes and complete the renaming” on page 48 provides information on how to complete the renaming process, where applicable.

Failure of the nsrck -L7 command when moving a server

If the old NetWorker server is not to be a client of the new NetWorker server, then the new NetWorker server takes ownership of all of old NetWorker server's index and file system save sets.
Expectations with this are:

◆ The old server is decommissioned.
◆ The new server will have old server's client ID
◆ You cannot have old server as a client to new server (since the new server will have the old server's client ID).
◆ You can browse the old server's indexes as new server.
◆ Old server can no longer recover any of its old data to the old server's hardware (except by special directed recover instructions).

Two methods can be used to make the new NetWorker server taking ownership of the old NetWorker server's save sets. Each creates a temporary client for transferring the client ID from the old NetWorker server to the new NetWorker server.

◆ The three computer method is whenever the new server that NetWorker is being moved to can not be temporarily renamed. For example, the new NetWorker server is a production device for other applications.

Note: Running NetWorker on a production system in itself is not highly recommended.

◆ The two computer method can be used whenever the new server NetWorker is moving too can be temporarily renamed or if a third system is unavailable to perform the three computer method.

Three computer method

The move (disaster recovery) is being done on a destination server that has a different hostname than the original server and the old server will not be a client of the new server. The goal is to change ownership of all the save sets owned by the old server, including indexes and bootstraps in the media database, to new server.

This procedure requires these three hosts:

◆ old server(A)
◆ temp_server(B)
◆ new server(C)

1. Install the same version of NetWorker as the old server(A) on temp_server(B) and new server(C) machines.
2. Run `savegrp -O` on old server(A) to create bootstrap save set (bA) and write down the client ID for old server(A) by selecting details of old servers(A)'s client resource in the NetWorker Administration program.
3. Move the physical media to the server B.
4. Run `mmrecov` on temp_server(B) using the bootstrap, (bA), from old server(A), to recover the media database and resource files.
5. Shut down the temp_server(B) NetWorker server and replace the default resource files with those that were recovered by copying or moving them from `/nsr/res.R`.
6. Restart temp_server(B) NetWorker server.
7. On temp_server(B), delete client 'old server(A)' and create client 'new server(C)' using the client ID from old server(A).
8. On temp_server(B), run `savegrp -O` to save a bootstrap, (bB) for temp_server(B) that has old server(A)'s client ID.
9. Move the physical media to the destination server new server(C).
10. Run `mmrecov` on new server(C) using the bootstrap, (bB), from temp_server(B).

11. Shut down new server(C) and replace the default resource files with those that were recovered by copying or moving them from `/nsr/res.R`.

12. Restart NetWorker server on new server(C).

13. Run `nsrim -X`.

14. Run `nsrck -L7` to recover client indexes on new server(C).

Completing the renaming process

“Modify client resource attributes and complete the renaming” on page 48 provides more information on how to complete the renaming process, where applicable.

Two computer method

If a third machine is not available, it is possible to reduce the number of machines needed by temporarily renaming the destination server (/etc/nsswitch.conf) to another unused name by modifying the hosts name lookup (/etc/hosts file).

The move (disaster recovery) is being done on a destination server that has a different hostname than the original server and the old server will not be a client of the new server. The goal is to change ownership of all the save sets owned by the old server, including indexes and bootstraps in the media database, to new server:

2. Run `nsrim -X`.

3. Run `nsrck -L7` to recover client indexes on new server(C).

Since the client resource for new server now as the client ID from the old server's client resource, old server cannot be a NetWorker client on new server.

Moving a NetWorker server to another server with a different hostname

This section describes how to move one NetWorker server to another server, that uses a different hostname where the old server becomes a client of new server and continue to use it's indexes and save sets.

Note: Rehosting a NetWorker server:

If using a Fujitsu NetWorker server: If transferring the server software to another computer (or transfer the computer to another IP address), use the keylic program to reinstall the licenses from your license file. Refer to the *NetWorker Administrator’s Guide* for more information.

Prerequisites

Before starting the NetWorker software on the new server, you must remove the server software from the computer you transferred it from, or shut down that computer’s `nsrd` daemon. If you start the `nsrd` daemon on another computer with the same license, you will receive a copy violation error message and the software will become disabled.
Task 1: Back up the NetWorker servers

To back up the NetWorker servers:

1. Make a full backup of the source server.
2. Before removing the NetWorker software from the old NetWorker server, save all indexes and bootstraps as level full on a single tape for the default pool. If the old NetWorker server was previously setup to use a pool other than the default to save the indexes and bootstrap, temporarily disable that pool. Put one instance of each client in a group called "TEST" to do a full backup of indexes of all clients and bootstrap. To save the indexes and bootstraps, enter this command:

   ```
   # savegrp -l full -D -G TEST
   ```

 Note: The group name is case-sensitive.

3. Retrieve the latest bootstrap information from the old NetWorker server.

 Note: The bootstrap notification information is required to run the mmrecov command. The *NetWorker Administrator’s Guide* provides further details.

Task 2: Moving NetWorker from one UNIX server to another

1. Shut down the old NetWorker server and the new NetWorker server.

 Note: After this, the old NetWorker server will be offline since you’re using the same hostname for the new NetWorker server.

2. Change the hardware devices (jukebox) from the old NetWorker server to the new NetWorker server. Make sure to configure the hardware devices for the operating system platform.

3. Restart the new NetWorker server.

4. Install the NetWorker software on the new NetWorker server and apply all applicable NetWorker patches. Detailed installation instructions are provided in the NetWorker Installation Guide appropriate for your operating system and the NetWorker software version.

5. Start the NetWorker software and then configure at least one tape device for use during running the mmrecov command.

6. Load the bootstrap tape using one of these procedures:

 1. Manually insert the volume containing the bootstrap using the jukebox control panel.
 2. Run the `nsrjb` command:

      ```
      # nsrjb -nlv -S (slot) -f (device-name)
      ```

 where:

 - (slot) represents the slot number location of the bootstrap tape.
 - (device-name) identifies the device.

 WARNING

 Do not use the nwadmin user interface to mount the bootstrap volume before the media database is recovered from the bootstrap.
Task 3: Recover the bootstrap save set to the new NetWorker server

Note: Recovering a very large server index and media database can take several hours.

To recover the bootstrap save set to the new NetWorker server:

1. Verify that the NetWorker daemons are running.
2. Use the `mmrecov` command to recover the media database and resource configuration files to the new NetWorker server.
3. Shut down the NetWorker daemons.
4. Replace the `/nsr/res` directory with the recovered `/nsr/res.R` directory.

 Note: The `/nsr/res` directory, which contains the configuration files, cannot be reliably overwritten while NetWorker software is running; therefore, `mmrecov` recovers the `/nsr/res` directory as `/nsr/res.R`.

5. Restart the NetWorker daemons.

The new NetWorker server should now be using the old NetWorker server's index, media database, and configuration files.

Task 4: Finish the NetWorker recovery on new NetWorker server

If the old NetWorker server is to be a client of the new NetWorker server, temporary permission must be given to the new NetWorker server to allow recovery of the old NetWorker server's save sets. The save sets are transferred to the new NetWorker server. While this is taking place:

- You can have the old NetWorker server as a client to the new NetWorker server.
- The new NetWorker server and old NetWorker server will have different client IDs.
- You must use save set recovery to recover the indexes.
- The old NetWorker server can still recover its old data to the old NetWorker server's hardware.

Use one of these two methods of recovering indexes previously managed by the old NetWorker server:

- Assign the new NetWorker server permission in the old NetWorker server's client resource within NetWorker, to recover all of the old NetWorker server's client index save sets. "Task 4a: Assign permission to recover client index save sets" on page 28 provides additional information.
- The old NetWorker server is made to be an alias of the new NetWorker server. This is configured in the hosts tables, which makes new NetWorker server and old NetWorker server appear as the same host and ultimately gives new NetWorker server permission to recover all the client file indexes using `nsrck -L7`. (old server must physically be off the network to avoid network contention until the hosts table changes are reversed). “Task 4b: Make the old server a hosts table alias of the new server” on page 29 provides additional information.

Task 4a: Assign permission to recover client index save sets

You can perform a save set recovery of client indexes.

You can allow the new server to recover all client index saves (save set recovery) and the old server can remain as a client of new server.
Upon completion of these procedures, when the new server has recovered all the client file indexes previously owned by old server, the old server can continue to be a NetWorker client of new server. In this way, the old server can still browse it’s old indexes and recover old data.

To do this:

1. Add the new server name to the Remote Access field of the old server's client resource.
2. Using save set recovery, recover the indexes from the old server to the new server, (you may need, for each client index, to recover multiple save sets starting with the level full and then all level 9 save sets to fully recover an entire index):
   ```
   recover -S ssid_of_client_index
   ```
3. Run `nsrck -L6` to rebuild the indexes.
 All old client indexes are now moved to the new server.
4. You can now remove the new server from the old server's Remote Access or leave for additional save set recovers of file system data.

Task 4b: Make the old server a hosts table alias of the new server

Upon completion of these procedures after the new server has recovered all the client file indexes (previously owned by old server), the old server can continue to be a NetWorker client of new server and thus, old server will still be able to browse its old indexes and recover old data:

1. Modify the hosts name lookup file (hosts) by inserting the old server_name in front of the new server_name, for example:
   ```
   xxxxx.xxxx.xxxx.xxx old server_name new server_name
   new server_name.org.com
   ```
 where the old_server_name is the name of the client owning the index save sets, returned by mminfo command:
   ```
   mminfo -a -q name=bootstrap -r client
   ```
 Note: If using the UNIX operating system you must also set the `/etc/nsswitch.conf` to point to the `/etc/hosts` files first.

3. Once the indexes are recovered return the hosts table (and on UNIX, `/etc/nsswitch.conf`).

Task 5: Completing the move process

“Modify client resource attributes and complete the renaming” on page 48 provides more information on how to complete the renaming process, where applicable.
This chapter explains procedures to follow when moving a NetWorker server. It includes these sections:

- Moving and restoring a NetWorker client to another NetWorker server 32
- Moving the NetWorker server to a new operating environment 34
- Moving the NetWorker server to a server with the new UNIX host 35
- Moving the NetWorker server to a server with the same hostname 40
- Renaming a NetWorker server ... 43
- Merging several NetWorker servers onto one NetWorker server 49
- Troubleshooting client ID issues .. 52
Moving and restoring a NetWorker client to another NetWorker server

Prerequisites

Prior to moving or restoring a NetWorker client, enter this command to determine the client ID:

```
# mminfo -av -q client=volleyball -r client, clientid | sort | uniq
```

Note: Assume that the client's name is volleyball for the purpose of this example.

The output of this command is similar to:

```
client client ID  
volleyball 5257ba-000004-40b557-40ef556-001000-846792
```

Once this information is available, save the client ID information for later use. It is needed when creating the client on the other NetWorker, which is referred to as server B. Server A references the server that NetWorker currently resides on.

This section includes these tasks:

- "Task 1: Create the NetWorker client" on page 32
- "Task 2: Assign the new client to a group" on page 33

Task 1: Create the NetWorker client

To create the NetWorker client:

1. In the NetWorker Administrator window, enable diagnostic mode by selecting View > Diagnostic Mode to view the client ID for the client.

2. Create a NetWorker client on NetWorker server B with exactly the name it appears as in server A. For example, if the client on server A is created with fully qualified domain name (FQDN), then the client should be created on NetWorker server B with the same FQDN. More details are provided in the NetWorker Administrator’s Guide.

3. Make the client ID for this client on NetWorker server B match the client ID record from NetWorker server A.

 Enter the original client's Client ID value in the Client ID attribute of the newly created client resource.

 Note: Additional information on the Client ID attribute is provided in the NetWorker Administrator’s Guide.

4. Create the pools on NetWorker server B that the tapes containing this client’s data were assigned to originally in NetWorker server A.

 Note: The pool name is case-sensitive.
Task 2: Assign the new client to a group

To set up the client you created to a group:

1. Assign this client to a group.
2. Set the browse and retention policy.
3. Update the servers file on the client with the name of NetWorker server B.

 If you are using UNIX and not the servers file, modify this statement, in the NetWorker startup script for each NetWorker client, as shown below:

   ```bash
   nsrexed -s backup_server
   ```

 After adding the NetWorker server B hostname to the servers file, restart the NetWorker Remote Exec service/daemon on the client machine.

4. Manually insert the volume containing the bootstrap using the jukebox control panel, then run this nsrjb command:

   ```bash
   # nsrjb -nlv -S (slot) -f (device-name)
   ```

 where:

 * (slot) represents the slot number location of the bootstrap tape.
 * (device-name) is the device ID.

5. To enter the save set information from the tapes that the original client was saved to, and to build the Client File Indexes, run this command for each tape:

   ```bash
   scanner -i -c clientname devicename
   ```

6. Use the recover command to browse the client's indexes on server B.

7. Select these files and then recover them.

8. Since this client is now backed up by a different NetWorker server, add the new NetWorker server hostname to the /nsr/res/servers file.

 If you are using UNIX and not the servers file, modify this statement, in the NetWorker startup script for each NetWorker client, as shown below:

   ```bash
   nsrexed -s backup_server
   ```
Moving the NetWorker server to a new operating environment

Moving, copying or using the NetWorker mmrecov command to move a NetWorker server's media database and resource files to a different OS platform, even between UNIX by different vendors, is NOT SUPPORTED. The only exception to this is if resources files are rebuilt manually and the NetWorker scanner command is used to rebuild media database and indexes. You can move between versions such as Sun Solaris 9 to Sun Solaris 10 or Windows 2003 to Windows 2000.

The tapes from one NetWorker server can be scanned into the media database of a NetWorker server on a different OS platform. Then the media database and indexes (if necessary) can be rebuilt. The NetWorker server resource file needs rebuilding. The following are instructions on how to allow the tapes and indexes from one NetWorker server to be managed by another NetWorker of a different platform:

Note: If using an EMC NetWorker server:

Before performing these steps, submit the Host Transfer Affidavit to EMC Licensing so that the licenses from the original NetWorker server can be used on the new NetWorker server.

1. Move any required hardware (jukebox, tape drives) to the new server and verify that the hardware operates correctly.
2. Install NetWorker and the NetWorker Management Console.
3. If using a Fujitsu NetWorker server: Install the license file by using the keylic command.
4. Install and configure NetWorker resources on the new server.
 This includes a full reconfiguring of the old server by re-creating all the same groups, clients, pools, label templates, and notifications, etc.
5. Shut down NetWorker.
6. Copy all indexes /nsr/index for all clients from the old NetWorker server to the new NetWorker server. Place these in the index directory /nsr/index of the new NetWorker server.
 Indexes are ASCII files and can be simply copied using regular operating system commands. If the new NetWorker server has a different hostname, an index for the new NetWorker server was created during the installation of NetWorker. The old NetWorker server’s index can still be used by the old NetWorker server if it is to be a client of the new NetWorker server.

 Note: The NetWorker configuration on the new server should now be identical to the previous configuration on the old NetWorker server.

7. Restart NetWorker.
8. Run the scanner command to scan tapes and rebuild the media database.

 The media database cannot be recovered by mmrecov when a different OS platform is in use. However, you can use the scanner command to rebuild the media database and update indexes. Enter this command to do this:

 `$ scanner -m (device-name)`

 Use the following command to update the indexes while rebuilding the media database:

 `$ scanner -i (device-name)`
Note: Not all tapes need to be scanned immediately or some cases at all. If the tape is passed it's retention period you may wish just to re-label the tape as scanning can take many hours. If the tape will not be required in the near future you can scanner it in later.

Moving the NetWorker server to a server with the new UNIX host

This section describes how to move one NetWorker server to another NetWorker server that uses a new UNIX host. It includes these tasks:

- "Task 1: Prepare the NetWorker source and target servers" on page 35
- "Task 2: Set up the target NetWorker server" on page 36
- "Task 3: Rename the target NetWorker server to the new name" on page 38
- "Task 4: Obtain and enter a new authorization code" on page 38
- "Task 5: Modify attributes in the client resource for the NetWorker server" on page 39

Task 1: Prepare the NetWorker source and target servers

1. On the original server -- volleyball -- perform a level full backup of the bootstrap.
2. Perform a level full backup of the client file indexes:
 a. Create a group that contains all of the NetWorker clients, including the NetWorker server host.
 b. After the group is created, enter the following command from the NetWorker server:
      ```
      # savegrp -o -l full -G test_group
      ```
 where:
      ```
      test_group
      ```
 is the group you create in step 2-1
 c. Record the bootstrap ssid.
 To send backups to a pool other than the default pool, refer to the NetWorker Administration Guide.
3. Record the client ID of the original NetWorker server by entering:
   ```
   # mminfo -av -q client=volleyball -r client, clientid | uniq
   ```
 The output of this command is similar to the following:
   ```
   client       client ID
   volleyball   d6da3ffd-00000004-40ed68ff-40ed68fe-00010000-89456792
   ```
4. Shut down the original NetWorker server -- volleyball.
   ```
   # nsr_shutdown
   ```
5. Change the hostname temporarily at the OS level on the target server, football.
   ```
   # hostname nsr_server_temp
   ```
6. Temporarily set the name resolution on the NetWorker server to “files” (to look up only the /etc/hosts file) by modifying the /etc/nsswitch.conf file on the NetWorker server to:
   ```
   # hosts: files dns
   hosts: files
   ```
Note: For more information on the `/etc/nsswitch.conf` file, refer to the appropriate operating system documentation.

7. Edit the `/etc/hosts` file to add an entry for the temporary server name.
 For example, entry in the `/etc/hosts` file:

 137.69.103.145 football football.mycompany.com

 change to:

 137.69.103.145 nsr_server_temp

8. Create a `/nsr` link that points to the directory where all of the NetWorker data, such as the media databases, client file indexes, and configuration files are stored.
 The directory to which the `/nsr` link points should be a mirror image of the directory structure on the original host.
 For example, if a link to `/nsr` on the original server is similar to the following:

 # ls -ld /nsr
 lrwxrwxrwx 1 root root 8 Jul 13 15:40 /nsr ->/networker/nsr

 Then an identical link to `/nsr` should exist on the target server.

 Note: The `mmrecov` command fails if there are any discrepancies in the directory structures.

9. Connect the tape or library device to the new NetWorker host.

 IMPORTANT
 To use a new tape or library device, it must be the same make and model as the original device. If it is not the same, the device may not be able to read tapes created by the original device.

10. Reboot the server, if required.

11. Install the same version if the NetWorker software on the target server.

Task 2: Set up the target NetWorker server

1. Start NetWorker server on the target host.
 A new Client resource is automatically created for the target NetWorker server.

2. Configure the tape or jukebox device.

3. Recover the bootstrap:
 a. Load the tape that contains the bootstrap backup.
 If loading a tape into a jukebox, enter the `nsrjb` command:

 # nsrjb -ln -s#
 where # specifies the slot number of the bootstrap tape.
 (To manually load a tape, use the front panel of the jukebox.)
 b. Run the `mmrecov` command.

 # mmrecov
c. Follow the mmrecov command prompts to complete the bootstrap recovery.
d. Specify the ssid that was generated in "Task 1:"
The bootstrap recovery is complete.

4. Shut down the NetWorker server.

5. Delete the /nsr/res directory or rename it to, for example, /nsr/res.junk.

7. Start the NetWorker software.

8. Delete the Client resource for the original NetWorker server, volleyball, by using either of the following:
 - NetWorker Administrator program (nwadmin)
 - NetWorker character-based interface (nsradmin)

 Note: Ensure that all instances of the original NetWorker server in the Client resource are deleted.

9. Edit the /etc/hosts file and add a temporary entry for the target server, football. For example:

```
10.10.10.10 football football.mycompany.com
```

 where the IP address (10.10.10.10) is a fake IP address that enables the creation of a Client resource for the new NetWorker server hostname.

 The NetWorker software must be able to resolve the client name to an IP address. (this IP address is temporary and is removed after the renaming process completes.)

10. Use the NetWorker Administrator program to create a Client resource for the target NetWorker server, football:

 a. Start the NetWorker Administrator program

 b. From the View menu, select Details.

 c. Create a new Client resource. Enter the new hostname for the Name attribute and the Client ID.

   ```
   Name: football
   Client ID: d6da3ffd-00000004-40ed68ff-40ed68fe-00010000-89456792
   ```

 The Client ID is from the original NetWorker server, volleyball.

 d. After entering information for all required fields, click **Apply**.

 The following message may appear.

   ```
   Renaming client volleyball to football
   Re-apply if this is desired
   ```

 Click **Apply** again to confirm the renaming of the NetWorker client.

11. Enter the **mminfo** command to verify that all of the save sets in the media database that belonged to the old server, volleyball, now belong to the new server, football:

```
# mminfo -av -q client=football -r client, ssid, name
```
The output of the command looks similar to the following:

```
volume  client  date      time        size  ssid     fl lvl name
Volume.001 football 07/08/04 11:35:57 AM  63 KB 4176308701  cr  9
index:football
Volume.001 football 07/08/04 11:35:56 AM  8 KB 4193085916  cr  9
index:samantha
Volume.001 samantha 07/08/04 11:36:47 AM 40 MB 4209863119  cb full C:sapmnt
Volume.001 football 07/08/04 11:35:36 AM 4 B 4226640328  cb incr /7.1.2
Volume.001 football 07/08/04 11:35:12 AM 48 KB 4243417520  cr full bootstrap
```

Task 3: Rename the target NetWorker server to the new name

1. Shut down the NetWorker software by entering the following command:

   ```
   # nsr_shutdown -q
   ```

2. Rename the NetWorker server host at the operating system level by entering the following command:

   ```
   # hostname football
   ```

3. Edit the `/etc/hosts` file to remove the reference to the temporary server name, `nsr_server_temp` and the fake address 10.10.10.10.

 a. Remove the following entries from the `/etc/hosts` file:

   ```
   137.69.103.145  nsr_server_temp  
   10.10.10.10   football football.mycompany.com
   ```

 b. Add the following entry to the `/etc/hosts` file:

   ```
   137.69.103.145   football   football.mycompany.com
   ```

4. Start the NetWorker software.

5. Delete the Client resource for the temporary server, `nsr_server_temp`.

6. Delete the directories that were created for `nsr_server_temp` in the `/nsr/index` directory.

 (These directories were from the original server, `volleyball`.)

   ```
   # cd /nsr/index
   # rm -r nsr_server_temp volleyball
   ```

7. Recover client indexes:

   ```
   # nsrck -L7 client-name
   ```

8. Run a test recovery of some NetWorker server data and NetWorker client data to ensure that recoveries are working correctly.

Task 4: Obtain and enter a new authorization code

After moving the NetWorker software to another computer, obtain a new authorization code by requesting a Host Transfer Affidavit from LEGATO Licensing. You can contact LEGATO Licensing by either of these methods.

- Send an email to licensing@legato.com.
- Calling LEGATO Licensing directly and following the instructions provided to enter the new authorization code.
Task 5: Modify attributes in the client resource for the NetWorker server

To complete the process of moving the NetWorker software, do the following, if applicable:

1. Make any necessary changes to attributes in the Client resource for the NetWorker server. For example, the Groups, Browse Policy, and Retention Policy attributes may require changes since the NetWorker server hostname has been changed.

2. Update references to the original NetWorker server hostname in the Pool Configuration, Label Template, and Notification resources.

3. Add the new NetWorker server hostname to the /nsr/res/servers file for each NetWorker client. After adding the NetWorker server hostname to the /nsr/res/servers file, you must restart the NetWorker client daemon (nsrexced).

4. If using NetWorker Database Modules with the NetWorker software for backups and recoveries, make appropriate updates.
 - If using the NetWorker Module for Oracle, update the NSR_SERVER environment variable to reflect the new NetWorker server hostname. The NSR_SERVER variable is located in the RMAN script.
 - If using the NetWorker Module for SAP/R3 with Oracle, update the initORACLE_SID.ult file to reflect the new NetWorker server hostname.
 - If using any other NetWorker Module product, refer to the appropriate EMC documentation.
Moving the NetWorker server to a server with the same hostname

This section describes how to move one NetWorker server to another NetWorker server that uses the same hostname. It includes these tasks:

◆ "Task 1: Back up the NetWorker servers" on page 40
◆ "Task 2: Move NetWorker from one UNIX server to another" on page 41
◆ "Task 3: Recover the bootstrap save set to the target server" on page 42
◆ "Task 4: Finish the NetWorker recovery on target server" on page 42
◆ "Task 5: Test backups and recoveries and other NetWorker operations" on page 42

Prerequisites

If using a Fujitsu NetWorker server: None.

If using an EMC NetWorker server: Prior to moving a NetWorker server to another server having the same hostname, submit the Host Transfer Affidavit to EMC Licensing.

Note: Cross-platform recoveries are not supported.

Task 1: Back up the NetWorker servers

To back up the NetWorker servers:

1. Make a full backup of the source server by running the following:
   ```
   savegrp -l full -c nw_servername -G group_name
   ```
 where `group_name` identifies the group containing the server with the save set all.

2. Before removing the NetWorker software from the source server, save all indexes and bootstraps as level full on a single tape for the default pool.

3. If the source server was previously setup to use a pool, rather than the default to save the indexes and bootstrap, temporarily disable that pool.

4. Put one instance of each client in a group called TEST to do a full backup of indexes of all clients and bootstrap. To save the indexes and bootstraps, enter this command:
   ```
   # savegrp -l full -O -G TEST
   ```
 Note: The group name is case-sensitive.

5. Retrieve the latest bootstrap information from the source server.

 Note: The bootstrap notification information is required to run the `mmrecov` command. The `NetWorker Administrator's Guide` provides further details.

The following example shows the type of bootstrap information to retrieve and how to retrieve it.

Example

The user can run `mminfo -av` to find the bootstrap ssid:

```
# mminfo -av
volume  client   date    time       size  ssid   fl
lvl name                      
clientdata.001 my_client     09/07/07 03:29:26 PM   74 MB
4276211910 cbNs full /vol/vol1/mydata
```
In this case the bootstrap ssid is 4242657578.

Alternatively, the user can use the scanner command to scan the bootstrap volume and find out the bootstrap ssid and file number:

```
# scanner -B /dev/rmt/2cbn
8909:scanner: using '/dev/rmt/2cbn' as the device name
8936:scanner: scanning 8mm tape sodiummeta.001 on /dev/rmt/2cbn
8761:scanner: done with 8mm tape sodiummeta.001
```

Task 2: Move NetWorker from one UNIX server to another

1. Shut down the source server and the target server.

 Note: From here the source server will be offline since you are using the same hostname for the target server.

2. Connect the media devices to the target server and configure them.

 Note: Make sure to configure the hardware devices for the operating system platform so that the operating system can see them.

3. Restart the target server.

4. Install the NetWorker software on the target server and apply all applicable NetWorker patches.

 Note: Detailed installation instructions are provided in the *NetWorker Administrator’s Guide*, the NetWorker readme files and the Single Correction Service (EKS) readme files.

5. Start the NetWorker software and then configure at least one media device that can read the bootstrap volume.

 Note: This device is used when running the `mmreco` procedure. If the bootstrap device is in a jukebox, configure the jukebox as well.

6. Load the bootstrap tape using either of these steps:

 - Manually insert the volume containing the bootstrap using the jukebox control panel.
 - Run this `nsrjb` command:
     ```
     # nsrjb -nlv -S (slot) -f (device-name)
     where:
     - (slot) represents the slot number location of the bootstrap tape
     - (device-name) is the device ID
     ```

 WARNING

 You cannot use the NetWorker administrator’s user interface to mount the bootstrap volume before the media database is recovered from the bootstrap.

Task 3: Recover the bootstrap save set to the target server

Note: Recovering a very large server index and media database can take several hours.

To recover the bootstrap save set to the target server:
1. Make sure the NetWorker daemons are running.
2. Use the `mmrecov` command to recover the media database and resource configuration files to the target server. For example:
   ```
   # mmrecov
   ```
3. Enter the bootstrap ID when prompted. If you do not know the file and record numbers of the bootstrap, press `Enter` to accept the default value of 0.
4. Shut down the NetWorker daemons:
   ```
   nsr_shutdown
   ```
5. Rename the current `/nsr/res` directory and replace it with the `/nsr/res.R` directory. This will avoid issues with duplicate resource entries.
 The `/nsr/res` directory, which contains the configuration files, cannot be reliably overwritten while NetWorker software is running; therefore, `mmrecov` recovers the `/nsr/res` directory as `/nsr/res.R`.
6. Restart the NetWorker daemons. The target server should now be using the source server's index, `mmvolume6` (media database) and configuration files.

Note: Instructions on running `mmrecov` are also provided in the `mmrecov` man page.

Task 4: Finish the NetWorker recovery on target server

1. Run the `nsrck -L7` command, both to recover the client file index of all of the NetWorker clients and the index for the NetWorker server.
2. Verify that the index are browsable by running `nsrinfo <client>`.

Task 5: Test backups and recoveries and other NetWorker operations

Test backups and recoveries and other NetWorker operations to verify correct operation.
Renaming a NetWorker server

This section describes how to change a NetWorker server or server hostname. It includes these tasks:

- "Task 1: Prepare the NetWorker server" on page 43
- "Task 2: Rename the NetWorker server host to a temporary name" on page 45
- "Task 3: Rename the NetWorker server host to the new name" on page 46
- "Task 4: Modify client resource attributes and complete the renaming" on page 48

IMPORTANT

It is a good idea to have a copy of the nsrdb or make sure of the details for every client resource of the NetWorker server (as they will all be deleted in a later step) to make easier to rebuild the client in case there is more than one client resource.

*Note: The following tasks describe the process of renaming a host named *volleyball* to the new name *pingpong.*

Task 1: Prepare the NetWorker server

Before changing the NetWorker server hostname at the operating system level:

Note: During this procedure you have the option of performing a level full backup of the client file indexes.

1. Create a group that contains all of the NetWorker clients, including the NetWorker server host.

2. After the group is created, enter this command from the NetWorker server:

   ```
   # savegrp -O -l full -G group_name
   ``

   where:

   - `group_name` identifies the group you create in step 1.

3. Set the `Autostart` attribute to `disable` for all backup groups.
   a. Create a text file on the NetWorker server that includes the following two lines:

   ```
 type: NSR group
 update autostart: Disabled
   ```

   b. Enter this command to automatically set the `Autostart` attribute to disable:

   ```
 # nsradmin -i text.file
   ```

   where `text.file` is the name of the text file you just created.

   *Note: If you do not run nsradmin from the same directory that the text file was created in, you must specify the path to the text file within the nsradmin command (for example, nsradmin -i /tmp/text.file).*

   *Note: Renaming the NetWorker server must be done when the server is idle. Make sure that all backup or recovery processes complete (or are stopped) before continuing.*
4. To avoid DNS look-up issues on the UNIX platform, set the name resolution on the NetWorker server to "files" (to look up only the /etc/hosts file) by modifying the /etc/nsswitch.conf file on the NetWorker server (for example, volleyball) to:

```bash
#hosts: files dns
hosts: files
```

Note: After the NetWorker server is renamed, the name resolution can be changed back to its previous setting, if necessary. Step 3 in "Task 3:" provides more information.

5. Edit the /etc/hosts file and add this for the NetWorker server volleyball.mycompany.com.

```bash
Internet host table
#
127.0.0.1 localhost loopback
137.69.103.146 volleyball volleyball.mycompany.com
```

6. Add the entry *@*@ to the NetWorker server administrator list:

```bash
User=root, host=volleyball
@
```

Note: The entry @volleyball grants administrative privileges to all users on the host named volleyball.

7. Obtain the client ID of the NetWorker server client resource by entering the mminfo command:

```bash
mminfo -av - q client=volleyball -r client, clientid | sort | uniq
```

The output of this command is similar to:

```
client client ID
volleyball 5225b7ba-00000004-40ebf557-40ebf556-00010000-89456792
```

Note: Save the client ID information for use in a later renaming procedure.

8. Create a list of all NetWorker server save sets in the media database by entering this command:

```bash
mminfo -av - q client=volleyball -r client, ssid, name
```

The output of this command is similar to:

```
volleyball 4075550467 bootstrap
volleyball 4092327682 index:volleyball
volleyball 4109104898 index:samantha
volleyball 4142659318 index:football
volleyball 4176213749 /etc
volleyball 4192990818 bootstrap
volleyball 4209768033 index:volleyball
```

The list of save sets in the media database can be very large, especially if the environment includes a production database. After changing the NetWorker server hostname, use this list of save sets to verify that the server name change is successful.
Task 2: Rename the NetWorker server host to a temporary name

To rename the NetWorker server host to a temporary name:

1. Shut down the NetWorker software by entering this command:
   
   ```
 # nsr_shutdown -q
   ```

2. Enter this command to rename the NetWorker server:

   ```
 # hostname nsr_server_temp
   ```
   
   where `nsr_server_temp` identifies the temporary hostname for the NetWorker server.

3. Update the `/etc/hosts` file. To do this:

   a. Add the an entry for the temporary NetWorker server hostname, `nsr_server_temp`.
   
   b. Comment out the entry for the original NetWorker server hostname, `volleyball`.

   The `/etc/hosts` file should look similar to:

   ```
 # Internet host table
 # 127.0.0.1; localhost loopback
 # 137.69.103.146; volleyball volleyball.mycompany.com
 137.69.103.146; nsr_server_temp
   ```

4. Start the NetWorker software by entering this command on the NetWorker server:

   ```
 # /etc/init.d/networker start
   ```
   
   A new client resource is automatically created for the temporary NetWorker server, `nsr_server_temp`.

5. If `nsr_server_temp` is in the administrator list, delete the client resource for the original NetWorker server, `volleyball`, by using either the `nsradmin` command or NetWorker Administrator. The NetWorker Administrator’s Guide and the NetWorker Command Reference Guide provide more information on NetWorker Administrator or the `nsradmin` command.

   **Note:** Ensure that all instances of the original NetWorker server in the client resource are deleted.

6. Add an entry for the new NetWorker server hostname, `pingpong`, to the `/etc/hosts` file.

   The `/etc/hosts` file should look similar to:

   ```
 # Internet host table
 #
 # 127.0.0.1 localhost loopback
 # 137.69.103.146 volleyball volleyball.mycompany.com
 137.69.103.146 nsr_server_temp
 10.10.10.10 pingpong pingpong.mycompany.com
   ```

   If you change the Internet domain, as well as the NetWorker server hostname, the `/etc/hosts` entry should look similar to:

   ```
 10.10.10.10 pingpong.corp.mycompany.com pingpong
   ```
   
   where:

   - The IP address (10.10.10.10) is a fake IP address that enables the creation of a client resource for the new NetWorker server hostname. To create a client resource, the NetWorker software must be able to resolve the client name to an IP address. (This IP address is temporary and is removed after the renaming process completes.)
   - The fully qualified domain name (FQDN) is specified as the first name after the IP address in the `/etc/hosts` file.
During startup, the NetWorker server assumes this fully qualified domain name. This ensures that if the name resolution is later switched to DNS, the NetWorker server is started with the correct hostname.

Use the NetWorker Administrator program to create a client resource for the target NetWorker server, pingpong:

7. Start the NetWorker Administrator program.
8. From the View menu, select Details to display the hidden attributes.
9. Create a new client resource using the FQDN and enter the new hostname for the Name attribute and the Client ID (obtained from step 7 in Task 1) for the Client ID attribute, for example:

   Name: pingpong
   Client id: 5225b7ba-00000004-40ebf557-40ebf556-00010000-89456792

   Note: In this example, the Client ID is from the original NetWorker server name, volleyball.

10. After entering information for all required fields, click Apply. This message should appear.

    Renaming client volleyball to pingpong
    Re-apply if this is desired

11. Click Apply again to confirm the renaming of the NetWorker client.

    If the new name includes a change to the Internet domain and the hostname (for example, pingpong.corp.mycompany.com) create a client resource that uses this name.

12. Enter the mminfo command to verify that all of the save sets in the media database are associated to the new NetWorker server hostname:

    # mminfo –av -q client=pingpong –r client, ssid, name
    The output for this command looks similar to:

    pingpong 4075550467 bootstrap
    pingpong 4092327682 index:pingpong
    pingpong 4092104898 index:samantha
    pingpong 4142659318 index:football
    pingpong 4176213749 /etc
    pingpong 4192990818 bootstrap
    pingpong 4209768033 index:pingpong

13. Shut down the NetWorker server by entering this command on the NetWorker server:

    # nsr_shutdown

Task 3: Rename the NetWorker server host to the new name

To rename the NetWorker server host to the new name:

1. Rename the NetWorker server host at the operating system level by entering this command on the NetWorker server:

    # hostname pingpong

    If changing only the domain name of the NetWorker server, set the hostname back to its original name, for example:

    # hostname volleyball
2. Edit the /etc/hosts file to remove the reference to the temporary server name, nsr_server_temp and the fake IP address, 10.10.10.10.

The /etc/hosts file resembles:

```
Internet host table
#
127.0.0.1 localhost loopback
137.69.103.146 pingpong pingpong.mycompany.com
```

If both the hostname and domain name have been changed, the /etc/hosts file resembles this:

```
Internet host table
#
127.0.0.1 localhost loopback
137.69.103.146 pingpong.corp.mycompany.com pingpong
```

3. If you changed the name resolution method (step 5 in Task 1), change the name resolution to its original value by modifying the /etc/nsswitch.conf file.

After resetting the name resolution, the /etc/nsswitch.conf file should look similar to:

```
"hosts:" and "services:"
hosts: files
data: files
```

4. If using DNS or NetWorker Information Services (NIS), make sure that the entry for the new NetWorker server hostname is correctly defined in the DNS or NIS database.

5. Delete the index directory for nsr_server_temp and pingpong by entering these commands in the /nsr/index directory:

```
rm -r nsr_server_temp
rm -r pingpong
```

Do not delete the original NetWorker server (volleyball) index directory.

6. Rename the original NetWorker server index directory to the new NetWorker server by entering these commands:

```
cd /nsr/index
mv volleyball pingpong
```

If the new NetWorker server hostname is a FQDN (pingpong.corp.mycompany.com), rename the original NetWorker server directory appropriately.

7. Start NetWorker server by entering this command on the NetWorker server:

```
/etc/init.d/networker start
```

8. Open the NetWorker Console and launch the NetWorker Administration application.

9. From the Administration window, select Configuration > UserGroups >NW_Users.

10. Right-click NW_Users and click Properties.

11. Delete the *@* entry from the Users pane.
Task 4: Modify client resource attributes and complete the renaming

**Note:** A hardware change that changes the host ID of the NetWorker server invalidates the NetWorker licenses. In this case, use the **keylic** program to reinstall the Fujitsu licenses from your license file. Refer to the *NetWorker Administrator’s Guide* for more information.

Complete this procedure, if applicable, to finish the renaming process:

1. Make any necessary modifications to attributes in the client resource for the NetWorker server. For example, the **Groups**, **Browse Policy**, and **Retention Policy** attributes may require modifications since the NetWorker server hostname has been changed.

2. Update references to the original NetWorker server hostname in the Pool Configuration, Label Template, and Notification resources.

3. Add the new NetWorker server hostname to the `c:\program files\legato\nsr\res\servers` file for each NetWorker client. After adding the NetWorker server hostname to the `c:\program files\legato\nsr\res\servers` file, you must restart the NetWorker client daemon (`nsreced`).

   **Note:** When modifying the server file add the new hostname as the first entry. Also, the hosts file on the client may have to be updated accordingly.

4. When using NetWorker Database Modules with the NetWorker software for backups and recoveries, make appropriate updates. For example:
   - If using the NetWorker Module for Oracle, update the NSR_SERVER environment variable to reflect the new NetWorker server hostname. The NSR_SERVER variable is located in the RMAN script.
   - If using the NetWorker Module for SAP/R3 with Oracle, update the `init<ORACLE_SID>.ult` file to reflect the new NetWorker server hostname.
   - Consult the appropriate documentation if using any other NetWorker module product.

5. Verify that the indexes are browsable.

6. Test backups and recoveries and other NetWorker operations to verify correct operation.
Merging several NetWorker servers onto one NetWorker server

This section describes how to consolidate or migrate several NetWorker servers into one new NetWorker server.

Note: Merging servers is not a trivial task. Fujitsu Technology Solutions strongly recommends that you engage Technical Support before attempting this.

To merge multiple servers:

- "Task 1: Prepare the NetWorker server for movement" on page 49
- "Task 2: Move the old NetWorker server to the new host system" on page 49
- "Task 3: List the server contents and identify the servers to be backed up" on page 50
- "Task 4: Configure NetWorker" on page 50
- "Task 5: Perform a test backup and recovery" on page 51

Note: Your existing NetWorker servers in operation are referred to in these instructions as your old NetWorker servers. The single host onto which you are merging is called your new NetWorker server.

Task 1: Prepare the NetWorker server for movement

To prepare the NetWorker server for movement:

1. Upgrade NetWorker to version x.x.x.
   All servers must first be at least at a minimum of 7.1. If not upgrade NetWorker on all servers to at least NetWorker 7.1, preferably upgrade all servers to the latest version of NetWorker.

2. Select the NetWorker server with the bootstrap base information to be preserved.
   You will be merging all other old servers onto this chosen host. Your choice may be decided by the size of the media database. A large media database indicates many tapes and save sets, thus, choosing to preserve the largest media database results in fewer tapes needing to be scanned in by the NetWorker scanner command, possibly saving many hours.

Task 2: Move the old NetWorker server to the new host system

To move the old NetWorker server to the new host system:

1. If the merge of NetWorker servers is take place on a new host server and not to an existing NetWorker host, then first move the NetWorker server chosen to be the preserved server to the new host system.

2. If you will be using licenses, like client connections, from old servers moving to the new NetWorker server and if the new NetWorker server is also a new host system then the following applies:
   - If using a Fujitsu NetWorker server, reinstall the licenses from your license file by using the keylic command.

3. If using an EMC NetWorker server, authorization codes for these licenses will be invalidated. This is due to hostid differences from the old systems which NetWorker licenses are based on. You must get a Host Transfer Affidavit from EMC Customer
Service, complete the form, and submit it to EMC. You will receive new authorization codes which you must install within 15 days or the NetWorker software becomes disabled and various licenses will expire.

**CAUTION**

Before starting the NetWorker software on the new server, you must remove the server software from the computer you transferred it from, or at least shut down that NetWorker server daemon. If you start the nsrd daemon on another computer with the same license, you will receive a Copy Violation error message and the software will become disabled.

---

**Task 3: List the server contents and identify the servers to be backed up**

To get the server contents and identify which servers are to be backed up:

1. Run the mminfo command, in the verbose mode, on each of the old NetWorker servers. This generates a list of all tapes and contents known by that server. For example:
   
   ```bash
 mminfo -a -m -v -s
   ```

   Record this information and store it in a secure location.

   **Note:** You do not need to do this for the server you choose to be preserved in the next step.

2. From the new server, use the NetWorker administrator program to define all remaining NetWorker clients from the other old NetWorker servers. These are the old servers to be backed up by the new NetWorker server.

---

**Task 4: Configure NetWorker**

Use the following steps to configure NetWorker:

1. Configure the new NetWorker server to backup the clients from the non-preserved old NetWorker servers, ensuring that the client ID from the original server is used when creating these new clients. You will have to redefine any information that was unique to the non-migrated servers, such as pools, groups and browse and retention policies that were on those servers.

   **Note:** Clients will have to be created with the same name as the original server. For example, if the client was created with the long name on the original server, it will have to be created with the long name on the new server.

2. Use scanner to repopulate any indexes of any old tapes that you want online indexes migrated to the new server using the command: scanner -i tape_device (use also `-c ' to populate indexes of only a specific client on the volume). To only scanner in the volume to the media database and not populate indexes as well use the command: scanner -m tape_device. Use the data from the mminfo command as a catalog for all tapes. This can be done at any time (future days, weeks, months) but you must have NetWorker read each tape to populate any indexes wanted online on the new server. You do not have to do this for tapes that were created by the old NetWorker server that you preserved.

   **Note:** If the client ID is not correct, running the scanner -i command will fail to correctly populate the client file index.
3. Add the new NetWorker server hostname to the /nsr/res/servers file for each NetWorker client. After adding the NetWorker server hostname to the /nsr/res/servers file, you must restart the NetWorker client daemon (nsrexecd).

4. Instead of scanning in tapes of data whose indexes are wanted online you may wish to keep the old NetWorker servers around until most of their backups have passed their retention policy. You would then use the mminfo command as a permanent record of past tape and you would not need to use scanner on any tapes, except if you wish to restore data from a very old tape.

5. Once done, verify that the indexes are browsable.

Note:

1. There is not a way to merge the bootstrap information from all the old servers. You must redefine the NetWorker clients to be backed up for all except the one server you have selected to migrate to the new server.

2. You must upgrade to a minimum of NetWorker 7.1 in order to use this merge procedure. Although there is no need to upgrade the clients to NetWorker 7.1 to perform the merge your clients should be upgraded so that you can enjoy all of the latest enhancements.

3. If you have offsite archive tapes then you can use your mminfo output as a permanent record of those tapes and what data is on them. If you ever want to recover data from those tapes you can run scanner on them at that time.

4. You may merge servers over a period of time, such as one server per week.

5. You may merge servers of any operating systems to a server of any operating system.

6. If the old preserved NetWorker is moved to a new host server then the preserved server's old host server must be isolated (NetWorker shut down) and it's backups stopped during the merges, as it will have the same server name as the new NetWorker server.

Task 5: Perform a test backup and recovery

Test backups and recoveries and other NetWorker operations to verify correct operation.

Note: You may merge servers over a period of time, such as one server per week. You also can merge servers of any operating systems to a server of any operating system.
Troubleshooting client ID issues

When you create a client, a client ID is generated, and both client name and client ID are permanently stored in the media database. This information is never removed from the media database, even if you delete all client instances.

If you try to rename the client (by delete the old client and create a client with a new name), but do not retain the original client ID, NetWorker assumes that this is a different client and creates a new client entry in the media database with a new client ID. This causes NetWorker to be confused when it tries to return information from the media database, because there is now more than one record of this client with different client IDs.

Support recommends the following procedure to troubleshoot hostnames, client IDs, and to start a new index:

1. Run this command (if running on UNIX) to determine the different numbers of client IDs for the client:
   ```
 mminfo -av -r 'clientid,client' | grep (client name) | sort | uniq
   ```
   **Note:** For this workaround, you are going to need to create a dummy hostname with a fictional IP address on your host table.

2. Create a host file entry for a dummy client.

3. Run the mminfo command from step 1 to get the client ID for the name of the original client that no longer exists as a client resource, and to get the client ID for the new client name.

4. Delete all instances of the new client that have been created.

5. Create a dummy client with the new client ID that was created for the new client name in step 3.
   You will receive a warning that the client is being renamed.

6. Create a new name for the client and use the client ID associated with the original client name.
   You will receive a warning that the client is being renamed.

7. Delete the client instance for the dummy client.

8. Shut down NetWorker services/daemons.

9. Delete the dummy index and the new client name index.

10. Rename the old_clientname index to the new client name index.

11. Restart the NetWorker services/daemons.
This chapter provides the instructions necessary to recover a NetWorker server from any supported operating system. The procedures describe, in general terms, what you should do and provides examples where appropriate. In some cases, specific operating systems require unique procedures and, wherever necessary the operating system is specified in the procedure heading.

This chapter includes these procedures:

- **Prerequisites** ................................................................. 54
- **Recovering a NetWorker server** ........................................ 56
- **Task 1: Reinstall the NetWorker server software** ............. 58
- **Task 2: Configure NetWorker device and client resources** ........................................ 59
- **Task 3: Locate the server’s bootstrap save set ID** ............... 61
- **Task 4: Recover the NetWorker server bootstrap** ............... 62
- **Task 5: Rename the NetWorker server resource directory/files** ..................................................... 65
- **Task 6: Recover indexes and data** .................................... 66
- **Task 7: Recover the application and user data (UNIX only)** ........ 71
- **Task 8: Create a record of backups done after the bootstrap is created** .................................. 72
- **Task 9: Complete Windows specific recovery procedures** ........................................ 74
- **Task 10: Complete NetWare unique recovery procedures** ........................................ 76
- **Task 11: Perform a test backup and recovery** ...................... 77
- **Recovering a replicated NDS partition** ................................ 78
Prerequisites

There is a significant amount of information that must be known before you attempt to recover a NetWorker server. Table 10 on page 54 identifies the information, based on the operating system in use, that you will require during the recovery procedure.

**Note:** Future recoveries can be simplified if this information, including any changes made to it, is recorded and kept in a secure location.

<table>
<thead>
<tr>
<th>UNIX</th>
<th>Windows</th>
<th>NetWare</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetWorker version and patch level.</td>
<td>NetWorker version and patch level.</td>
<td>NetWorker version and patch level.</td>
</tr>
<tr>
<td>NetWorker installation path.</td>
<td>NetWorker installation path.</td>
<td>NetWorker installation path.</td>
</tr>
<tr>
<td><strong>TCP/IP properties:</strong></td>
<td><strong>TCP/IP properties:</strong></td>
<td><strong>TCP/IP properties:</strong></td>
</tr>
<tr>
<td>• Adapter type</td>
<td>• Adapter type</td>
<td>• Adapter type</td>
</tr>
<tr>
<td>• IP address</td>
<td>• IP address</td>
<td>• IP address</td>
</tr>
<tr>
<td>• Default gateway</td>
<td>• Default gateway</td>
<td>• Default gateway</td>
</tr>
<tr>
<td>• Subnet mask</td>
<td>• Subnet mask</td>
<td>• Subnet mask</td>
</tr>
<tr>
<td>• DNS server</td>
<td>• DNS server</td>
<td>• DNS server</td>
</tr>
<tr>
<td>• WINS server (if used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Computer properties:</strong></td>
<td><strong>Host properties:</strong></td>
<td><strong>Computer properties:</strong></td>
</tr>
<tr>
<td>• Hostname</td>
<td>• Computer name</td>
<td>• Hostname</td>
</tr>
<tr>
<td>• DNS domain name</td>
<td>• Fully-qualified domain name</td>
<td>• DNS domain name</td>
</tr>
<tr>
<td>• Superuser password</td>
<td>• Administrator account password</td>
<td>• Superuser password</td>
</tr>
<tr>
<td><strong>Backup or clone volumes that contain the NetWorker server’s most recent:</strong></td>
<td><strong>Backup or clone volumes containing:</strong></td>
<td><strong>Backup or clone volumes containing:</strong></td>
</tr>
<tr>
<td>• bootstrap</td>
<td>• Server media manager (default location - SYS:NSR/MM)</td>
<td></td>
</tr>
<tr>
<td>• client file indexes</td>
<td>• Server indexes (default location - SYS:NSR/INDEX: &lt;server_name&gt;)</td>
<td></td>
</tr>
<tr>
<td>• file-system data including all Windows SYSTEM or VSS SYSTEM save sets.</td>
<td>• Server configuration files (default location - SYS:NSR/RES)</td>
<td></td>
</tr>
<tr>
<td><strong>Device and SCSI drivers.</strong></td>
<td>If you routinely move NetWorker backup media off site for safekeeping, ensure that all necessary volumes are available so that you can avoid delays during a recovery.</td>
<td></td>
</tr>
<tr>
<td><strong>Boot files required for booting the kernel. For example:</strong></td>
<td><strong>Note:</strong> Before you begin a NetWorker server recovery in a Windows environment, you should understand the information about SYSTEM or VSS SYSTEM save sets in the NetWorker Administrator’s Guide.</td>
<td><strong>Note:</strong> Before you begin a NetWorker server recovery in a Windows environment, you should understand the information about SYSTEM or VSS SYSTEM save sets in the NetWorker Administrator’s Guide.</td>
</tr>
</tbody>
</table>

/unix
/boot
/etc/default/boot
/stand/vmunix

**Note:** If you routinely move NetWorker backup media to an off-site location for safekeeping, ensure that all necessary volumes are available so that you can avoid delays during a recovery. To list the media associated with the files to recover, run `mminfo -mv` from the command prompt. The *NetWorker Command Reference Guide* contains more information about the `mminfo` command.
DNS server

If the host being recovered uses DNS for hostname resolution, the DNS server must be available or hostnames cannot be resolved. This could cause the NetWorker software to be unresponsive when attempting to resolve hostnames.

If the DNS server is not available, disable DNS lookup for the host being recovered. When the DNS server is available, re-enable DNS lookup.
Recovering a NetWorker server

This section describes how to install the NetWorker software. Unless specified, these instruction apply to any operating system supported by NetWorker.

Should it become necessary to recover a NetWorker server within a NetWare operating system, determine whether or not that server contained a “NDS partition” (replicated or not). If the NetWorker server did not contain an NDS partition, you should recover the NetWare operating system, in accordance with the vendors instructions and documentation, and then complete the instructions in “Recovering a NetWorker server” on page 56.

Note: Do not perform the procedure described in “Recovering a replicated NDS partition” on page 78 for a NetWorker server configured to use an NDS partition.

For Windows OS: Reinstall the Windows operating system

If you want to update Windows during the recovery, first recover the Windows version that was installed immediately prior to the disaster, then upgrade after you have completed the recovery.

To reinstall the Windows operating system:

1. Reinstall the same version of Windows, including any patches, service packs, or option packs in use immediately prior to the disaster.

   During the installation, be sure to set the following configuration options as they were prior to the disaster:
   
   • Windows installation location
   • Computer name
   • Administrator account password
   • Regional settings
   • Date and time settings

   Note: If the computer that is being recovered was a domain controller prior to the disaster, that configuration is recovered later in the process.

2. After the operating system is installed, configure the computer as follows:

   Windows 2003 and Windows XP Professional:
   
   a. Start the Control Panel System tool.
   
   b. On the System Properties dialog box, click the Computer Name tab and click the Change button.
   
   c. In the Computer Name Changes dialog box, ensure that the computer name is correct and that the computer is a member of the correct domain. Click More.
   
   d. In the DNS Suffix and NetBIOS Computer Name dialog box, ensure that the Primary DNS Suffix Of This Computer text box contains the correct domain name (the name that is appended to the hostname to form the fully-qualified domain name). For example, the fully-qualified domain name for a computer named kingdome, might be kingdome.seattle.washington.com.
   
   e. Start the Control Panel Local Area Connection tool.
   
   f. In the Local Area Connection Status dialog box, click Properties.
In the **Local Area Connection Properties** dialog box, select **Internet Protocol (TCP/IP)** and click **Properties**.

In the **Internet Protocol (TCP/IP) Properties** dialog box, set the TCP/IP properties as they were prior to the disaster, with the same IP address, subnet mask, default gateway, and DNS server.

**Windows 2000:**

a. Start the **Control Panel System** tool.

b. In the **System Properties** dialog box, click the **Network Identification** tab and click **Properties**.

c. In the **Identification Changes** dialog box, ensure that the computer name is correct and that the computer is a member of the correct domain. Click **More**.

d. In the **DNS Suffix and NetBIOS Computer Name** dialog box, ensure that the **Primary DNS Suffix Of This Computer** box contains the correct domain name (the name that is appended to the host name to form the fully-qualified domain name). For example, the fully-qualified domain name for a computer named *kingdome*, might be *kingdome.seattle.washington.com*.

e. Start the **Control Panel NetWork and Dial-up Connections** tool.

f. In the **Network and Dial-up Connections** window, right-click **Local Area Connection** and select **Properties**.

g. In the **Local Area Connection Properties** dialog box, select **Internet Protocol (TCP/IP)** and click **Properties**.

h. In the **Internet Protocol (TCP/IP) Properties** dialog box, set the TCP/IP properties as they were prior to the disaster, with the same IP address, subnet mask, default gateway, and DNS server.

**Windows NT 4.0:**

a. Start the **Control Panel Network** tool.

b. In the **Network** dialog box, click the **Identification** tab and ensure that the computer name and domain are correct.

c. Click the **Protocols** tab, select **TCP/IP** and click **Properties**.

d. In the **Microsoft TCP/IP Properties** dialog box, set the TCP/IP properties as they were prior to the disaster, with the same IP address, subnet mask, default gateway, and DNS server.

3. In the **hosts** file (%SystemRoot%\system32\drivers\etc\hosts) make an entry for the NetWorker server to be used in the recovery. NetWorker software requires this entry when:

   - DNS is not in use or no DNS server is available.
   - The NetWorker server host being recovered is also a DNS server.

   The entry in the **hosts** file must include the IP address, the fully-qualified domain name, and the computer name, all on the same line. For example:

   ```
 123.56.890.474 kingdome.seattle.washington.com kingdome
   ```

**Note:** If the machine being recovered is also a NetWorker server and no DNS server is available, each client must also be listed in this file.
4. Configure the virtual memory as it was prior to the system being brought down by a disaster. Instructions are provided in Table 11.

Table 11 Virtual memory configuration

<table>
<thead>
<tr>
<th>With this operating system</th>
<th>Complete these instructions</th>
</tr>
</thead>
</table>
2. In the System Properties dialog box, click the Advanced tab and click Settings in the Performance section.  
3. In the Performance Options dialog box, click the Advanced tab and click Change in the Virtual Memory section.  
4. In the Virtual Memory dialog box, set the virtual memory options. Click OK. |
2. In the System Properties dialog box, click the Advanced tab and click Performance Options.  
3. In the Performance Options dialog box, click Change.  
4. In the Virtual Memory dialog box, set the virtual memory options. Click OK. |
| Windows NT 4.0 | 1. Start the Control Panel System tool.  
2. In the System Properties dialog box, click the Performance Tab.  
3. On the Performance tab, click Change.  
4. In the Virtual Memory dialog box, set the virtual memory options. Click OK. |

5. Reinstall any additional Windows components previously installed through Windows Setup, such as Gateway Services for NetWare.

Do not upgrade OEM drivers for network interface cards (NIC) with the OEM Service Pack version of the NIC drivers.

Task 1: Reinstall the NetWorker server software

To reinstall the NetWorker server software:

1. Reinstall the same version of the NetWorker server software into its original location. When you reinstall the NetWorker server software, the NetWorker client is also installed. Installation instructions are provided in the appropriate EMC NetWorker Installation Guide.

Note: To upgrade the NetWorker server, first recover the server to its original state, then perform the upgrade. In a UNIX environment, you do not need to reload the license if the NetWorker configuration files still exist. By default, the configuration files are located in the SYS:NSR:RES directory. In a windows environment, you can install NetWorker over a network from a shared drive and, because mmrecov is case-sensitive, the installation path must be the same as the original. For example, C:\Program Files\legato\nsr is not same as C:\Program Files\legato\NSR.

2. Reinstall any NetWorker patches that were installed prior to the disaster.

3. If the /nsr directory or any of its subdirectories except for /nsr/res were linked, re-create these links. Step 4 provides more information about the /nsr/res directory.

To re-create links to NetWorker directories:

- Stop the NetWorker daemons by entering the nsr_shutdown command at the command line:
  
  nsr_shutdown

- Move the files to their original location.

- Create the links from the /nsr directory to the original location.
• Restart the NetWorker server by first entering the `nsrexecd` command and then entering the `nsrd` command, for example:

```
nsrexecd
nsrd
```

*Note:* You also can restart the NetWorker server by running the NetWorker startup script for the appropriate platform.

4. Determine `/nsr/res` directory linking issues as detailed in Table 12.

<table>
<thead>
<tr>
<th>Was <code>/nsr/res</code> linked to another directory?</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Skip this step.</td>
</tr>
<tr>
<td>Yes</td>
<td>Do not re-create the link; instead, create a <code>/nsr/res</code> directory. This directory is used temporarily in &quot;Task 4: Recover the NetWorker server bootstrap&quot; on page 62.</td>
</tr>
</tbody>
</table>

*Note:* The resource database will not be recovered to the `/nsr/res` directory created in this step. Instead, the resource directory will be recovered to the link’s target directory. For example, if `/nsr/res` was linked to a directory named `/bigres`, then the resource database is recovered to `/bigres`. Ensure that there is enough space in the target directory for the recovered resource database.

---

**Task 2: Configure NetWorker device and client resources**

To configure NetWorker device and client resources:

1. Create and configure the NetWorker server’s device resources.

   To recover data by using a stand-alone device, ensure that a resource for the stand-alone device exists (this is defined in the `/nsr/res` directory). If a resource for the standalone device does not exist, create it using the NetWorker Administrator program.

2. In the Windows NetWorker Administrator program, open the NetWorker server’s client resource and verify that the `Aliases` attribute (in the `Preferences` tab) contains the correct information. For example, aliases for a computer named `kingdome` might be:

   ```
 kingdome
 kingdome.seattle.washington.com
   ```

   Set the NetWorker browse and retention policies to a decade. The browse policy is one quarter (three months) by default. This enables you to recover all of the server’s records.

   **CAUTION**

   If you do not reset the NetWorker server’s browse and retention policies, any of the server’s records that are more than one quarter (three months) old will be discarded, because the browse policy is one quarter by default.

3. If you are using the Windows NetWorker Administrator program:

   a. Configure the client resource for the NetWorker server. Set the browse and retention policies to a time value that covers the oldest save sets being used for the recovery. This allows you to recover all of the NetWorker server’s records with the `mmrecov` command.
Note: If the browse and retention policies set for the client instance of the NetWorker server are long enough to cover all of the save sets you use, all of the NetWorker server's records are recovered. However, if the browse and retention policies set for the client are not changed and save sets exist for the NetWorker server that have browse and retention policies greater than one month, they are discarded because the default browse policy is one month.

b. If the NetWorker server’s client file index has not been relocated from its original path, or if you are going to recover a relocated client file index from a backup created with NetWorker V7.x, skip this step and proceed to “Task 3: Locate the server’s bootstrap save set ID” on page 61.

If you are going to recover the client file index from a backup created with a NetWorker version earlier than 7.x, and you moved the NetWorker server’s client file index path to a different location, you must:

- Edit the Index Path attribute of the NetWorker server’s client resource to reflect the correct path.
- Stop and restart the NetWorker Backup and Recovery Service and the NetWorker Remote Exec Service.

4. If you are recovering data using an autochanger, you must complete the steps specific to your operating system. Table 13 identifies the procedures for each support operating system.

<table>
<thead>
<tr>
<th>If your operating system is...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| UNIX                          | 1. Ensure that an autochanger resource exists (this is defined in the /nsr/res directory). If the Autochanger resource does not exist, create it using the NetWorker Console Administration interface. The NetWorker Administrator’s Guide provides details about this interface.  
2. Reset the autochanger by using the nsrjb -vHE command. This command resets the autochanger, ejects backup volumes, re-initializes the element status, and checks each slot for a volume.  
  - If the autochanger does not support the -E option, initialize the element status by using sjielm (on Linux, use ielem).  
  - Inventory the autochanger by using the nsrjb -l command. This helps to determine whether the volumes required to recover the bootstrap are located inside the autochanger.  

Note: None of these volumes will be in the media database, so you cannot view the contents of the tape through NMC, and the volume name will come up as ‘-‘. |
Recovering a NetWorker server

Task 3: Locate the server’s bootstrap save set ID

If you already know the save set ID of the NetWorker server’s most recent bootstrap, skip this task and go to “Task 4: Recover the NetWorker server bootstrap” on page 62.

The bootstrap contains the NetWorker server’s media database and resource configuration files, which are required for a NetWorker server recovery. “Backing up data” on page 12 contains more information about the bootstrap.

If you routinely move NetWorker backup media to an off-site location for safekeeping, and a subsequent file recover operation generates a mount request, the recover operation waits until an operator mounts the request media. To avoid delays when recovering files, use the `mminfo -mv` command to list the media that is associated with the file to be recovered and to retrieve the media from the off site storage before starting the recover.

To locate the save set ID of the most recent bootstrap:

1. Insert the most recent media or clone volumes used for scheduled backups into the appropriate device.
2. At the console command line, switch to the directory where the NetWorker binary and executable files are located.

   **Note:** In a NetWare environment, these files are located the default directory called `SYS:NSR:BIN`.

---

**Table 13** Recovering data using an autochanger from specific operating systems  (2 of 2)

<table>
<thead>
<tr>
<th>If your operating system is...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Windows                       | 1. Start a Windows command prompt and change to the `<NetWorker_install_path>/bin` directory.  
2. Create and configure the Autochanger resource using the NetWorker Console Administration interface. The *NetWorker Administrator’s Guide* provides details about the NetWorker Console Administration interface.  
3. Run the `nsrjb -vHE` command from the command prompt. This resets the autochanger, ejects backup volumes, re-initializes the element status, and checks each slot for a volume. If the autochanger does not support the `-E` option (to re-initialize the element status), use the `sjilem` command to initialize the element status.  
4. To determine which volume contains the bootstrap, load the tape and run `scanner -B`. The media database will not contain any save set information for the tape. Inventory the autochanger by running the `nsrjb -Iv` command from the command prompt. If you know the slot number where the bootstrap is located, use the `nsrjb -Inv -S #` command to inventory that particular slot.  
5. If you are using an autochanger with Removable Storage enabled:  
   a. On the desktop, right-click My Computer and select Manage.  
   b. In the left pane of the Computer Management window, expand `Storage\Removable Storage\Physical Locations`.  
   c. Right-click the icon for the autochanger and select Inventory.  
   d. Minimize (but do not close) the Computer Management window.  
   e. After the Removable Storage inventory is complete, start the NetWorker Administrator program and select Devices on the Configure tab.  
   f. In the Devices window, right-click the Devices icon and select Create.  
   g. In the Create Devices dialog box, create a stand-alone NetWorker Device resource for each drive in the autochanger.  
   h. In the Computer Management window, double-click the icon for the autochanger (under `Storage\Removable Storage\Physical Locations`). Icons for the autochanger’s volumes appear in the right pane.  
   i. Right-click the icon for the volume that contains the bootstrap and select Mount. |
3. If you are using an autochanger, insert the first volume of the bootstrap save set into the
first drive of the autochanger by using this command:

   \texttt{nsrjb -lnv -S slot -f device\_name}

where:

   • \textit{slot} is the slot where the first volume is located.
   • \textit{device\_name} is the pathname for the first drive. You can obtain the \textit{device\_name} by
     using the \texttt{inquire} command.

4. Use the \texttt{scanner -B} command to determine the save set ID of the most recent bootstrap on
the media. For example:

   \texttt{scanner -B device\_name}

where \textit{device\_name} is the pathname for the drive where the appropriate volume is
located (for example, \texttt{\textbackslash\textbackslash Tape0} or \texttt{/dev/rmt/0hbn}).

If you do not locate the save set ID of the most recent bootstrap on the most recent media,
run the \texttt{scanner -B} command on preceding media to locate the save set ID of the most
recent bootstrap.

5. Record both the bootstrap save set ID, file number, record number, and the volume label
from the output.

---

\textbf{Task 4: Recover the NetWorker server bootstrap}

The process of recovering the server bootstrap is dependent on the operating system in use.
Perform the appropriate procedure:

- “Task 4a: Recover the NetWorker server bootstrap from Windows or UNIX systems” on
  page 62
- “Task 4b: Recover the NetWorker server bootstrap from a NetWare system” on page 64

\textbf{Task 4a: Recover the NetWorker server bootstrap from Windows or UNIX systems}

This task describes how to recover the bootstrap save set from within either a Windows or
UNIX system. Recovering the bootstrap overwrites the media database and recovers the
resource files.

**Note:** The \texttt{mmrecov} command is used to recover only the media database and resource files. To recover
the client file indexes (including the NetWorker server’s own client file index), use the \texttt{nsrck} command.
The \textit{NetWorker Command Reference Guide} provides details about the \texttt{mmrecov} and \texttt{nsrck} commands.

To recover the bootstrap save set:

1. Run the \texttt{mmrecov} command.

   If, within a Windows environment, you use clone volumes and have not loaded all of the
   necessary volumes, \texttt{mmrecov} prompts you for the original volume. In that case:
   
   a. Press \texttt{Ctrl - c} to exit \texttt{mmrecov}.
   b. Restart the NetWorker Backup and Recovery Service and the NetWorker Remote Exec
      Service.
   c. Run the \texttt{mmrecov} command to recover the bootstrap.

   **Note:** The \texttt{mmrecov} command overwrites the server’s media database. However, \texttt{mmrecov}
does not overwrite the resource database. Instead, \texttt{mmrecov} recovers the resource database to
an alternate location.
If, in a UNIX environment, the predisaster resource database was located in the default directory, which is /nsr/res, it is recovered to /nsr/res.R.

If the predisaster resource database was linked, then the resource database will be recovered to the link’s target directory. For example, if /nsr/res was linked to a directory named /bigres, then the resource database will be recovered to a directory named /bigres.

2. If the server has devices configured and enabled, this message appears.

   What is the name of the device you plan on using [xxxx]?

   Where xxxx identifies the default device name. If you receive this message, enter the name of the device you are using for the recovery.

3. When this message appears, enter the save set ID for the latest bootstrap.

   Enter the latest bootstrap save set ID []: 20076

   If you are recovering a cloned version of the bootstrap, specify the save set ID associated with the clone.

4. When this message appears, enter the file number to begin the recovery.

   Enter starting file number (if known) [0]: 130

   If you do not know the correct file number, press Return to accept the default of zero.

5. When this message appears, enter the first record number to begin the recovery.

   Enter starting record number (if known) [0]: 0

   If you do not know the correct record number, press Return to accept the default of zero.

6. When prompted, insert the volume containing the appropriate save set ID, as entered 20076 in step 3.

   Once you have loaded the appropriate volume, this message appears:

   Scanning xxx for save set 20076; this might take a while...

   **Note:** In both of these examples, xxx represents the device name previous entered in step 2.

   NetWorker then scans the volume for the appropriate save set and recovers it. Use NetWorker Administrator in the NetWorker Management Console to monitor the recovery.

   The NetWorker media database and resource database are recovered when this message appears:

   If your resource files were lost, they are now recovered in the 'res.R' directory. Copy or move them to the 'res' directory, after you have shut down the service. Then restart the service.

   Otherwise, just restart the service.

   If the on-line index for the server-name was lost, it can be recovered using the nsrck command.
Task 4b: Recover the NetWorker server bootstrap from a NetWare system

This task describes how to recover the bootstrap save set from within a NetWare system. By default, these files reside in the SYS:NSR and SYS:NSR/RES directories, and can be recovered by using the NetWorker Utilities program.

To recover the NetWorker bootstrap:

1. Load and inventory the devices. This ensures that the NetWorker software can recognize which slots contain which volumes.
   
   If you load a clone volume into a device, the NetWorker software will use the clone volume for the remainder of the recovery process. You might have to update the volume location to indicate that the original volume is not available.

2. Start the NetWorker Utilities program by entering this command at the NetWare system console:
   
   `load NETUTIL`

   **Note:** Disable scheduled backups and do not use the NetWorker software to perform backups or recoveries while running the NetWorker Utilities program. If backup and recovery processes are enabled, the state of the NetWorker indexes will become confused. From the NetWorker Utilities dialog, select Recover from a Disaster.

3. Enter the full name of the backup administrator (for example, .cn=Admin.O=’top level container’) into the User text box and the appropriate NetWare password into the Password text box and press Enter.

   The Device Selection window appears.

4. From the Device Selection window, select the device you intend to use and press Enter.

5. Insert the most recent media or clone volumes used for scheduled backups into the appropriate device:
   
   • If you are using a single tape device, manually insert the volume.
   • If you are using an autochanger, use the autochanger controls to manually select the slot containing the most recent backup volume.

   To determine the required backup volume, refer to the printed bootstrap records.

6. When this message appears, press Enter.
   
   `Put the volume for disaster recovery in device xxxx and press Enter.`

7. Press Enter to exit the NetWorker Utilities. The server’s processor will halt with multiple ABENDs.

8. Restart the NetWorker software.

9. From the NetWorker Utilities program, select F3 - Operation - Recover.


11. Press F2 to start the recovery. When messages indicating name conflicts appear, select Rename the Recover File for both files.

12. When recovery is complete, exit the NetWorker Utilities program.
**Task 5: Rename the NetWorker server resource directory/files**

The process of renaming server resource directories and files is dependent on the operating system in using. Perform the appropriate procedure:

- “Task 5a: Rename the NetWorker server resource directory in a UNIX system” on page 65
- “Task 5b: Rename the NetWorker server resource directory in a Windows system” on page 66
- “Task 5c: Rename the NetWorker server resource directory in a NetWare system” on page 66

**Task 5a: Rename the NetWorker server resource directory in a UNIX system**

Because the resource files cannot be reliably overwritten while the NetWorker software is running, mmrecov recovered the res directory to an alternate location.

To rename the resource directory:

1. Stop the daemons by entering the `nsr_shutdown` command at the command line:
   ```
 nsr_shutdown
   ```

2. Rename the existing `/nsr/res` directory to `/nsr/res.orig` using this command:
   ```
 mv res res.orig
   ```

3. Access the recovered resource database.

   If the resource database was recovered to `/nsr/res.R`, rename `/nsr/res.R` to `/nsr/resn` using this command:
   ```
 mv res.R res
   ```

   If the `/nsr/res` directory was linked before the disaster, then the resource database is recovered to the link’s target directory. For example, if `/nsr/res` was linked to a directory named `/bigres`, then the resource database is now recovered to `/bigres`. In this case, re-create the link from the `/nsr/res` directory to the target directory. For example:
   ```
 ln -s /bigres /nsr/res
   ```

4. Restart the NetWorker server by first entering the `nsrexed` command, then entering the `nsrd` command, for example:
   ```
 nsrexed
 nsrd
   ```

   **Note:** You also can restart the NetWorker server by running the NetWorker startup script for the appropriate platform.

5. After verifying that the NetWorker resources are correct, remove the `/nsr/res.orig` directory.

6. Run the `nsrjb -HE` command to reset the autochanger.

7. If you are using an autochanger, run the `nsrjb -Iv` command to reinventory the autochanger, or run the `nsrjb -Iv -S` command to reinventory only the affected slots.

8. If the NetWorker Console server was installed on the same machine as the NetWorker server, re-install the console software. Installation instructions are provided in the *Release Notice* or, if using an EMC NetWorker host, the appropriate appropriate *EMC NetWorker Installation Guide*. After reinstalling the NetWorker Console server, add the NetWorker server to list of hosts managed by the NetWorker Console server. The *NetWorker Administrator’s Guide* contains instructions on adding the server to the list of hosts.
Task 5b: Rename the NetWorker server resource directory in a Windows system

Because the NetWorker server’s resource files cannot reliably be overwritten while the NetWorker services are running, the `mmrecov` command recovers the `res` directory as `res.R`.

To put the recovered resource files into effect:

1. Stop these NetWorker services on the NetWorker server:
   - NetWorker Backup and Recovery Service
   - NetWorker Remote Exec Service
2. Copy the contents of the `<NetWorker_install_path>`\res.R directory to the `<NetWorker_install_path>`\res directory.
3. Restart the NetWorker services.

Task 5c: Rename the NetWorker server resource directory in a NetWare system

To rename the resource files in a NetWare system:

1. Unload all of the associated NLM files by using `nwdown`.
2. Delete the existing files (`NSR.RES` and `NSRJB.RES`).
3. Rename the recovered files, which were renamed with a tilde (~) upon recovery, to `NSR.RES` and `NRJB.RES`.
4. Restart the NetWorker software. This process recovers the NetWorker software to its last backup configuration, including: passwords, administrator privileges, backup groups, and schedules.
5. Verify that the NetWorker indexes and configuration files are recovered. If they are not recovered, select **Recover from a Disaster** from the NetWorker Utilities program, or use an older volume.

Task 6: Recover indexes and data

There are unique procedures, based on the operating system in use, concerning the recovery of indexes and data. These include:

- “Task 6a: Reset and inventory the autochanger in a Windows environment” on page 66
- “Task 6b: Recover all client file indexes in a UNIX environment” on page 68
- “Task 6c: Recover the Networker server data” on page 68

Task 6a: Reset and inventory the autochanger in a Windows environment

When resetting an autochanger, in a Windows environment, it is necessary to know how to:

- “Reset and inventory an autochanger with removable storage disabled” on page 66
- “Reset and inventory an autochanger with removable storage enabled” on page 67

**Note:** If you are using a stand-alone storage device to perform the recovery, skip this task and proceed to “Task 8: Create a record of backups done after the bootstrap is created” on page 72.

Reset and inventory an autochanger with removable storage disabled

To reset and inventory an autochanger with Removable Storage disabled:

1. Start a Windows command prompt and change to the directory that contains the NetWorker binary files. The default location is `<NetWorker_install_path>`\bin.
2. To reset the autochanger, eject volumes, re-initialize the element status, and check each slot for a volume, run this command:

   \texttt{nsrjb -vHE}

3. If you know which slots have changed configuration since the disaster, inventory only those slots. For example, to inventory only slot 3, run this command:

   \texttt{nsrjb -Iv -S 3}

   If you do not know which slots have changed configuration since the disaster, inventory all slots by running this command:

   \texttt{nsrjb -Iv}

   \textbf{Note:} If the autochanger does not support the \texttt{-E} option of the \texttt{nsrjb} command (to re-initialize the element status) use the \texttt{sjielm} command to initialize the element status. More information about the \texttt{nsrjb} and \texttt{sjielm} commands is provided in the \texttt{NetWorker Command Reference Guide}.

---

\section*{Reset and inventory an autochanger with removable storage enabled}

To reset and inventory an autochanger with Removable Storage enabled:

1. In \texttt{NetWorker Administrator} from the NetWorker Management Console, select \texttt{Autochanger} from the \texttt{Configure} tab.

2. In the \texttt{Autochanger} window, right-click the icon for the \texttt{Removable Storage} jukebox and select \texttt{Delete}.

3. Start a Windows command prompt and change to the directory that contains the NetWorker binary files. The default location is \texttt{<NetWorker_install_path>\bin}.

4. Create a new Autochanger resource using the \texttt{NetWorker Console Administration} interface. The \texttt{NetWorker Administrator’s Guide} provides details about the \texttt{NetWorker Console Administration} interface.

5. In the \texttt{NetWorker Console Administration Libraries} screen, right-click the icon for the \texttt{Removable Storage} jukebox and select \texttt{Operations}.

6. Right-click \texttt{My Computer} and select \texttt{Manage}.

7. In the left pane of the \texttt{Computer Management} window, expand \texttt{Storage\Removable Storage\Media Pools\Import} and check the appropriate type-specific media pool for NetWorker volumes.

8. On the \texttt{Autochanger Operations} dialog box, click \texttt{Add Volume} to reallocate NetWorker volumes from the import pool to this jukebox. Continue allocating until all of the NetWorker volumes belonging to the library associated with this jukebox are moved from the Import pool to the appropriate type-specific pool under \texttt{Storage\Removable Storage\Media Pools\NetWorker}.

9. In the \texttt{Autochanger Operations} dialog box, click \texttt{Reset} to reset the removable storage jukebox.

10. In the \texttt{Autochanger Operations} dialog box, click \texttt{Inventory} to inventory the contents of the removable storage jukebox.
Task 6b: Recover all client file indexes in a UNIX environment

Once you recover the server’s media database and resource database, recover all client file indexes on the NetWorker server. You will recover one client file index for each NetWorker client that the NetWorker server backed up.

Because a NetWorker server always has the NetWorker client installed, this task includes recovering the client file index for the NetWorker server.

To recover all client file indexes:

1. Enter the `nsrck -L7` command:
   ```bash
 nsrck -L7 client_name
   ```
   
   **Note:** Specify `client_name` if you want to recover an index only for a specific client.

2. If you are using a cloned version of the client file index, the NetWorker server may prompt you to load an original volume (not the clone volume).

   To use the clone:
   1. Press Ctrl-c to exit out of nsrck and verify that the pending original volume message has terminated.
   2. Enter the `nsrck -L7` command:
      ```bash
 nsrck -L7 client_name
      ```
   
   **Note:** Although you must recover a computer’s client file index before you can select individual files to recover, you can recover an entire save set on a computer by using a save set recover. You can also use save set recover to recover a portion of a save set.

Task 6c: Recover the NetWorker server data

There are unique procedures, based on the operating system in use, involved recovering NetWorker server data. These include:

- “Recovery in a NetWare environment” on page 68
- “Recovery in a Windows environment” on page 69

Recovery in a NetWare environment

To recover the NetWorker server data:

1. Insert the most recent backup or clone volumes into the device.
2. From the Mount dialog box, select the required volume.

   Notice that the volume is now marked (R); this means the volume is write protected.
3. From the Operation menu, select Recover to display the Client List window.
4. Select the client with the NetWare server name and press Enter; another login window appears.
5. Enter the appropriate information for each attribute and press Enter:
   - In the User attribute field, enter the full name of the backup administrator (for example, “.cn=Admin,O= ‘top level container’”).
   - In the Password attribute, enter the NetWare password and the browser window appears.
6. Select Schema and mark it for recover so that all extensions to the NDS schema are recovered.
7. From the File menu, select Start Recover, and press Enter.
8. If you have NDS data to recover, complete “Task 10a: Recover NDS data” on page 76, otherwise proceed to “Task 10b: Complete the server recovery” on page 77.

Recovery in a Windows environment

CAUTION

Recovery of volume mount points and their data requires special handling. If you attempt to recover a mount point and the mounted volume’s data in a single operation, the data will be recovered to the root of the host volume and recovery of the mount point will fail. To successfully recover the mounted volume’s data, first manually re-create the mount point. Use the same path as the original. Then, perform a separate NetWorker file recovery to recover just the mounted volume’s data (without including any of the host volume’s data in the recovery). The *NetWorker Administrator’s Guide* provides more information about backing up, recovering, and creating mount points.

Note: This special handling is not required when performing an ASR recovery.

To recover the remainder of the NetWorker server data:

1. Log in to Windows with local administrator privileges.

   CAUTION

   Directed recovery of SYSTEM or VSS SYSTEM save sets is not supported. To recover these save sets, log into the computer being recovered with local administrator privileges. Additionally, recover the SYSTEM or VSS SYSTEM save sets to the location that they were in before the disaster.

2. If you are using an autochanger, make sure it has been inventoried. “Task 6a: Reset and inventory the autochanger in a Windows environment” on page 66 provides more information. This ensures that the NetWorker server can recognize the location of each volume.

3. If you load a clone volume, the NetWorker software uses the clone volume for the remainder of the recovery process if either of these conditions exist:

   • The original volume was not added back into the media database.
   • The original volume was added back into the media database, but it was not placed in an autochanger and inventoried.

   However, if the original volume was added back into the media database, placed in an autochanger, and inventoried, the NetWorker software prompts you to mount the original volume.

4. Ensure that all drives that contained system information prior to the disaster are accessible. The system information includes the boot partition, system partition, and the partition that contains the databases and database logs for the system state components.

5. Start the NetWorker User program.

6. Click Recover.

7. In the Source Client dialog, select the computer you are recovering and click OK.

8. In the Destination Client dialog, select the computer you are recovering and click OK.

9. The computer’s directory structure appears in the Recover window.
10. Mark these save sets for recovery.
   • All local drives (except the NetWorker installation directory)
   • SYSTEM FILES:
   • SYSTEM DB:
   • SYSTEM STATE:

Alternatively, if you are using Windows 2003 and Volume Shadow Copy Service (VSS) is licensed and enabled, mark these save sets:

• All local drives (except the NetWorker installation directory)
• VSS SYSTEM BOOT:
• VSS SYSTEM FILESET:
• VSS SYSTEM SERVICES:
• VSS USER DATA:
• VSS OTHER:
• VSS ASR DISK:

Note: If you recover save sets in multiple NetWorker User operations, recover the SYSTEM STATE or VSS SYSTEM BOOT save set last to avoid booting Windows twice.

NetWorker software backs up user profiles in the save set that corresponds to the disk drive on which they are located (for example, the C: save set). To recover user profiles, recover the save set in which they were saved. User profile folders are located in `%SystemDrive%\Documents and Settings`.

11. From the Option menu, select Recover Options.

12. In the Recover Options dialog, select Overwrite Existing File.

   If you do not select Overwrite Existing File, the recovery process pauses before any existing files are overwritten. A Naming Conflict dialog appears, prompting you to indicate how the NetWorker software should resolve filename conflicts.

13. Click Start to begin the recovery.

   Note: Files in the Windows Recycle Bin are not password protected. If the Password Protection dialog appears, select Recover > OK to recover these files.

14. Check the log file to verify that no error messages were generated during the recovery sessions. The NetWorker software logs information about the recovery process to `<NetWorker_install_path>\networkr.log`.

   The log is overwritten each time a recovery is performed. If there are error messages in the log file, you might need to run the recovery again after addressing the source of the errors.

15. After recovery, reboot the computer to completely recover the system-protected files and, if the services are not restarted automatically, restart services that were automatically stopped prior to recovery.

16. If the NetWorker Management Console server was installed on the host and the Console database was lost, recover the database. Chapter 7, “Recovering the NetWorker Management Console Server,” provides instructions to recover the database.
Task 7: Recover the application and user data (UNIX only)

To recover the application and user data that was on the NetWorker server:

1. Log in as root.
2. Load and inventory the devices. This ensures that the NetWorker server can recognize the location of each volume.

   Note: If you load a clone volume, you must either delete the original volume from the media database or mark the desired save set as suspect in the media database. If you are using a clone volume, it will be used for the remainder of the recovery process.

3. Run the `nwrecover` program.
4. Mark all of the directories or files to be recovered, taking into consideration the outlined files and directories in Example 1.

   CAUTION

   Overwriting operating system files may cause unpredictable results.

Example 1  Operating system files to not overwrite

This list contains examples of operating system files that you should consider not overwriting. To determine all of the operating system files that should not be overwritten during a recovery, refer to the operating system documentation:

• Operating system boot files, such as:
  – /unix
  – /boot
  – /etc/default/boot
  – /stand/vmunix

• Other operating system files. For example, some of the files not to overwrite on the Solaris platform include:
  – /dev directory
  – /etc/path_to_inst
  – /etc/name_to_major
  – /etc/mnttab
  – /etc/dfs/sharetab
  – /etc/rmtab
  – /kernel
  – /usr/kernel
  – /etc/saf/zsmon/_pmpipe
  – /etc/sysevent/piclevent_door
Instead of overwriting these files, unmark the directory and when the restore has completed, if required, run another restore and mark only these files/directories, then choose to relocate or rename them. The *NetWorker Administrator's Guide* provides more information about renaming files during recovery.

5. Click **Start** to begin the recovery.

**Note:** The bootstrap backup restores the res directory, which in turn contains the nsrla database directory. The nsrla database contains the setting for directed recoveries, so this setting should be preserved with the bootstrap restore. More information about setting the **directed recover** option on a NetWorker client is provided in the *NetWorker Administrator's Guide*.

**Task 8: Create a record of backups done after the bootstrap is created**

After a disaster recovery, the media database will not contain information about any backups done after the bootstrap was created. The media database retains information about the last known file/record marks on the tape, and if backups were done after the bootstrap was created, the file/record information will not be current.

For any tapes that contain backups that were completed after the bootstrap was created, use the **scanner** command with, at a minimum, the **-m** option to scan the save sets and/or tapes into the media database. This will ensure that the media database has a record of all completed save sets and that valid backups will not be overwritten by future backups. The recovered daemon log files will show which volumes were written to after the bootstrap is recovered. After reviewing the log, a list of tapes that require scanning can be used.

Additionally, you should write protect all appendable volumes until the **scanner** command is finished, to prevent scheduled backups from using these volumes:

1. To identify only appendable volumes, enter this command:

   `$ mminfo -q '!full' -r "volume,client,mediarec,mediafile,next,name"`

   **Note:** This does not take into account any volumes that have been relabeled since the last bootstrap recovery. You may also want to get an mminfo output using **-q labeled** to get a list of volumes that have been relabeled since the bootstrap backup that was recovered or to check the daemon log again. When these volumes appear, you need to remove them from the media database and then scan them back in, in their entirety. The section “Removing volume entries from the media database for volume ID mismatches” on page 73 provides more information.

2. Using the volume names listed in the mminfo output, enter this command to mark a volume as read-only (without confirmation):

   `$ nsrcm -y -o readonly volume`

3. Mount the tape into a tape drive:

   `nsrjb -ln -f device`

   **Note:** Repeat this step for every appendable volume identified in step 1. If you can get a list of volumes that have been written to after the bootstrap that was recovered, you will not have to scan every appendable tape.

4. Change the Idle Device Timeout setting to 0 to prevent the automatic ejection of tapes scanned in.

5. Begin scanning in the missing save sets. Use the last file and record number from the previous **mminfo** command and enter this command:

   `$ scanner -f number -r number -m device`
6. If the Idle Device Timeout setting was changed in step 4, set it back to the original value.

7. If the NetWorker Management Console server was installed on the host and the Console database was lost, recover the database. “Recovering the console server database” on page 104 provides instructions to recover the database.

Removing volume entries from the media database for volume ID mismatches

If a volume was labeled or relabeled since the last recovery of the media database, volume ID mismatches occur. In this case, the volume entry must be removed from the media database and then scanned back in.

To identify and remove these volume entries from the media database:

1. Record a list of volumes that were labeled or relabeled after the bootstrap that was recovered by reviewing the daemon log file or by running an mminfo query of the "labeled" attribute.

2. Make these volumes write-protected.

3. Run the following command to delete these volumes:

   `nsrcm -d`

4. Change the Idle Device Timeout setting to 0 if the datazone will be impacted.

5. Scan the volumes back in.

6. If the Idle Device Timeout setting was changed in Step 4, set it back to the original value.

Accessing data on a filetype device after recovery

Once data is recovered from the tapes, there are different methods for accessing the data contained on a filetype device. The steps to repopulate the media database for an adv_filetype device depend on the following scenarios.

If save sets have been saved to adv_file but a record of the save sets does not exist in the recovered mm:

1. Disable all staging policies to prevent accidental grooming of save sets that do not exist in the mm but are on the adv_file device.

2. Rename the nsrim.prv file to nsrim.old. Renaming the file prevents a scheduled nsrim from running and purging the adv_file device of save sets that do not exist in the mm but are on the adv_file.

3. Determine which disks were written to after the date/time of the bootstrap backup to be recovered from the daemon log file.

4. Using the `mminfo` command, determine the last file/rec # for the last save set recorded for the adv_file.

5. Scan in the adv_file device at the next file/rec #.

6. Enable all staging policies.

7. **Rename the nsrim.old file to nsrim.prv.**

   If save sets have been staged from the adv_file device to tape:

   1. Disable all staging policies.

   2. Check the daemon log file to view the clone volumes that were used for the staging operation.
3. Run the **scanner** command on the adv_file device to view a list of save sets.
4. Run the **mminfo** command to view a list of save sets the mm identifies as residing on the adv_file device.
5. Compare the two outputs to identify a list of mismatched save sets. Once you compile this list, run the **nsrmm** command to delete these save sets from the media database.
6. Change the Idle Device Timeout setting to 0 if the datazone will be impacted.
7. Scan the save sets from the clone tapes back into the media database.
8. Enable all staging policies.
9. If the Idle Device Timeout setting was changed in step 6, set it back to the original value.

---

**Task 9: Complete Windows specific recovery procedures**

This section describes the recovery procedures that you must perform when working within a Windows environment. These procedures include:

- “Task 9a: Recover the NetWorker server’s client file indexes” on page 74
- “Task 9b: Recover the removable storage jukebox configuration” on page 75
- “Task 9c: Verify the NetWorker server recovery” on page 75

**Task 9a: Recover the NetWorker server’s client file indexes**

After the NetWorker server’s bootstrap save set is recovered, you can recover the client file indexes in any order; it is not necessary to recover the server’s own client file index before recovering the index of any other client.

If the clients have the NetWorker client software installed, you can run manual and scheduled backups as soon as the NetWorker server bootstrap is recovered. You also can recover complete save sets. You cannot, however, browse a client’s save sets until you recover the client file index.

To recover the client file indexes:

1. To recover the client file indexes, run one of these commands from the NetWorker server:
   - For all clients enter `nsrck -L7`
   - For a specific client enter `nsrck -L7 client_name`
2. If you are recovering the client file indexes from a clone volume, you may be prompted to load the original volume. In that case:
   a. Press **Ctrl - c** to exit `nsrck`.
   b. Restart these NetWorker services:
      - NetWorker Backup and Recovery Service
      - NetWorker Remote Exec Service
   c. Recover the client file indexes by running one of these commands:
      - For all clients enter `nsrck -L7`
      - For a specific client enter `nsrck -L7 client_name`
Task 9b: Recover the removable storage jukebox configuration

If you are using a stand-alone storage device or an autochanger with Removable Storage disabled, skip this task and go to “Task 9c: Verify the NetWorker server recovery” on page 75.

To recover an autochanger with Removable Storage enabled:

1. Right-click My Computer and select Manage.
2. In the left pane of the Computer Management window, expand Storage\Removable Storage\Physical Locations.
3. Double-click the icon for your autochanger. Icons for the autochanger’s volumes appear in the right pane.
4. Right-click the icon for the volume that contains the bootstrap and select Mount.
5. Start a Windows command prompt and change to the $NetWorker_install_path$\bin directory.
6. From the command prompt, run this command to recover the NetWorker server’s bootstrap:

   \texttt{mmrecov}

7. Stop these NetWorker services:
   
   • NetWorker Backup and Recovery Service
   • NetWorker Remote Exec Service
8. Rename the $NetWorker_install_path$\res.R directory to $NetWorker_install_path$\res.
9. Restart the NetWorker services.

Task 9c: Verify the NetWorker server recovery

To verify the NetWorker server recovery:

1. Reboot the NetWorker server host computer and verify that the NetWorker Backup and Recover server, NetWorker Power Monitor, and NetWorker Remote Exec services are started.
2. Use the Windows Event Viewer to examine the event logs for errors. In particular, check for:
   
   • Service startup errors related to the Windows system state
   • Errors regarding the recovery of Windows system-protected files
   
   The NetWorker Administrator’s Guide provides information about how the NetWorker software handles the Windows system state and system-protected files.
3. Verify that the NetWorker server and its associated clients are included in a scheduled NetWorker backup.
4. Perform a test backup and recover.
5. Verify that any applications that were running prior to the disaster, such as Microsoft Office, have been properly recovered. To check this, you can start each application and open a file.
6. If the NetWorker server was previously configured as a domain controller, verify that the drives configured to store the Active Directory database and log files have been recovered.

Appendix D “Additional Features of the Microsoft Windows Server” in the NetWorker Administrator’s Guide provides more information on the recovery of domain controllers.
Task 10: Complete NetWare unique recovery procedures

This section describes the recovery procedures that you must perform when working within a NetWare environment. These procedures include:

- “Task 10a: Recover NDS data” on page 76
- “Task 10b: Complete the server recovery” on page 77

Task 10a: Recover NDS data

Before performing an NDS backup or recover, refer to the October 1996 version of the Novell Application Notes. This document explains concepts and procedures that you must understand before working with NDS backups and recovers.

On networks with multiple servers, NDS automatically creates replicas (copies) of the NDS database or portions of it (partitions) and stores them on other servers. This process provides a readily available backup if either NDS or a partition is damaged.

CAUTION

Do not circumvent this replication process.

Recovery from a Storage Management Services backup

Whenever possible, use an active replica to recover lost data from the NDS tree. If, for any reason, this is not possible, data must be recovered from a Storage Management Services (SMS) backup. To do this:

1. Recover the NDS information.
2. Recover the file system data and trustee rights.
   - NDS backup and recovery is based on object names. The objects must exist in the tree before you can recover the file system data and trustee assignments for those objects. NDS should be functional (time and partitions synchronizing normally) before you proceed with a recovery.
   - To recover NDS data to this server by using the NetWorker software:
     a. Create a backup of the NDS root rather than a backup of only NDS leaf objects.
     b. Use the Recover or Directed Recover option from the Operation menu.

Recovery of NDS data

1. Press F3 to display the Operation menu.
2. Select Save Set Recover, and press Enter.

   Note: The Save Set Recover option in the NetWare version of the NetWorker Administrator program can not be used to restore NDS data if the original backup contained only leaf objects.

3. Select this server’s name as both the source and destination client.
4. Enter the full name of the backup administrator, and the password.
5. Select the {NDS} save set, and press Enter to display versions.
6. Select the version with the most recent full backup.
   - If there are any later save sets with level 1 or incremental backups, recover them from the oldest to the most recent.

The NDS is now recovered with the most recent data backup.
Task 10b: Complete the server recovery

To complete the server recovery:

1. Use NetWorker software to recover the remaining data, including the client file indexes. In the browser window, mark everything for recovery, and then unmark all still-operational volumes, LEGATOMM, the server’s LEGATODB, NSR.RES, NSRJB.RES, Schema, and NDS.

   Note: Recover each client file index by selecting the client folder from the indexes directory. Each client has a legatodb file that is located in SYS:NSR/INDEX/CLIENT-NAME.

   If you run out of memory while recovering multiple files, repeat this step and recover only one volume at a time.

2. Press F2 to display the File menu.

3. In the Browser window, display the NetWorker Recover Options dialog box and select Don’t Overwrite Data.

4. Verify the recovered data.

   From a workstation, use the ndir command or NetWare Administrator (NWAdmin) to check the data, trustee assignments, file ownership, and other related information.

5. Select Cross-Check Index from the Indexes dialog of the NetWorker Administrator program to compare the index records to the records in the media index.

6. Perform a check to make sure the server is fully recovered:
   • Verify that the server and its associated clients are included in a scheduled backup.
   • Run dsrepair to verify the integrity of any NDS databases.
   • Use the NetWorker Administrator program or the ndir workstation utility to verify the data, trustee assignments, and file ownership.

Task 11: Perform a test backup and recovery

To test the NetWorker client backup and recovery process:

1. Perform a test manual backup by using the appropriate backup commands.

2. Perform a test recovery by using the appropriate recovery commands.

The NetWorker Administrator’s Guide provides additional information on testing backup and recovery configurations.
Recovering a replicated NDS partition

If the NetWare server did not contain an NDS partition (replicated or not), do not complete this section. Instead, recover the NetWare operating system, in accordance with the vendors instructions and documentation, and then complete the procedure “Recovering a NetWorker server” on page 56.

This section contains the following information on recovering a replicated NDS partition over the network:

- “Recover a NetWare 4.10 SYS volume” on page 78
- “Recover a NetWare 4.11, 5.0, or IntraNetWare server SYS volume” on page 80

For NetWare 4.11/IntraNetWare servers, do not delete the server or volume objects for the failed volume from the NDS tree; you do not want to eliminate any references other objects might have to the volume. If you must delete objects on a NetWare 4.11/IntraNetWare server, use the NetWare 4.10 procedure for recovering from a disaster.

Recover a NetWare 4.10 SYS volume

To recover a SYS volume on a NetWare 4.10 server, complete these tasks:

- “Task 1: Recover the NetWare 4.10 SYS volume” on page 78
- “Task 2: Recover the SMS remote file system” on page 79
- “Task 3: Complete the recovery of the NetWare 4.10 SYS volume” on page 79

Task 1: Recover the NetWare 4.10 SYS volume

To recover a SYS volume on a NetWare 4.10 server:

1. Use the NetWorker Administrator program or netadmin to delete the volume objects associated with the failed server.

2. Use NDS Manager or partmgr to delete the server object for the failed server. You cannot use netadmin to delete a server object.

   The Partition Manager displays a warning message; select Yes to confirm the deletion.

3. Use NDS Manager or dsrepair to check the replica synchronization.

   If you see error messages, wait a few minutes and try again.

4. From the NetWorker server, perform a directed recover to recover the failed server’s Server Specific Info (SSI) files from a tape backup to a functioning NetWorker for NetWare client.

   The server-specific information files (SERVDATA.NDS, VOLSINFO.TXT, STARTUP.NCF, and AUTOEXEC.NCF) are recovered to a subdirectory under SYS\SYSTEM on the server you selected. This subdirectory is given a DOS 8.3 name derived from the source server name.

5. If the failed server held a master replica, use NDS Manager or dsrepair to designate a new master replica on a different server in the replica ring.

6. Use NDS Manager or dsrepair to perform an unattended full repair to check replica synchronization. If necessary, use NDS Manager or dsrepair on the servers containing master replicas to remove the failed server from the replica ring.

7. Shut down the failed server and replace any damaged server hardware. If you replace a hard drive, be sure that it is the same size or larger.
8. Format the DOS partitions and reinstall DOS.

   **Note:** Use the DOS Time command to ensure that the computer is set to the correct time to avoid time synchronization errors.

9. Reinstall NetWare 4.10 and NDS on the repaired or replaced server. Run `install` or `nwconfig`, select Custom Install, and follow the directions on the screen. Use the `STARTUP.NCF` and `AUTOEXEC.NCF` files recovered with SSI to answer the questions displayed on the screen:
   - Enter the same server name and internal IPX number that the server had prior to the disaster.
   - When prompted, insert the NetWare License diskette for the server into the disk drive.
   - When prompted for the name of the NDS tree, select the name of the tree that the server resided in before the disaster.
   - Select the time zone and configure the time.
   - Log in and specify the context for the server and its objects. Use the same context that was used before the disaster.
   - Edit the `STARTUP.NCF` and `AUTOEXEC.NCF` files to match the versions recovered with SSI.

   When the installation is complete, the server will contain all the files necessary to perform an SMS remote file-system recover. **“Task 2: Recover the SMS remote file system” on page 79** provides more information.

**Task 2: Recover the SMS remote file system**

To recover the SMS remote file system to a SYS volume on a NetWare 4.10 server:

1. Load the required namespace modules for each recovered volume. Use the `VOLSINFO.TXT` file to determine which namespaces need to be loaded (`MAC.NAM`, `LONG.NAM`, etc.).

2. Load the file-system TSA specific to your version of the NetWare operating system, by entering one of these commands:

   ```
 LOAD TSA410
 LOAD TSA312
 LOAD TSA500
   ```

3. Recover the file system for each volume affected by the failure. Do not recover the Schema and Root; they are recovered from a replica. You also do not need to recover Server Specific Info again. When prompted, suppress further prompting and overwrite files.

4. When you are prompted, log in by using the full name of the backup user.

5. If the failed server had non-SYS volumes that were not affected by the failure, from the **File** menu in the Browser window, select Recover to display the NetWorker Recover **Options** dialog. Select the **Don’t Overwrite Data; restore trustees, etc.** command, and then recover the volumes that were not affected by the failure.

6. Shut down and restart the repaired or replaced server.

**Task 3: Complete the recovery of the NetWare 4.10 SYS volume**

To complete the recovery of a NetWare 4.10 SYS volume:

1. If necessary, use NDS Manager or `dsrepair` to reestablish replicas on the repaired or replaced server.
2. Enter these commands at the command prompt:

```
LOAD TSA410
LOAD TSANDS
LOAD TSA500
```

3. From the Recover Browser window, recover the server object, volume objects, and any objects that formerly referenced the recovered volume or server objects. Expand the Root resource, mark the required objects, and then select Recover. When prompted, suppress further prompting and overwrite files.

4. Use NDS Manager or the Schedule immediate synchronization function of dsrepair to synchronize the replica on all servers.

5. Verify the recovered data. From a workstation, use either the nwadmin server utility or the ndir workstation utility to check the data, trustee assignments, file ownership, and other related information.

6. The SYS volume should now be recovered.

---

**Recover a NetWare 4.11, 5.0, or IntraNetWare server SYS volume**

To recover a SYS volume on a NetWare 4.11, NetWare 5.0, or IntraNetWare server, complete these tasks:

- “Task 1: Recover the NetWare SYS volume” on page 80
- “Task 2: Reinstall the operating systems” on page 81
- “Task 3: Complete the NetWare SYS volume recovery” on page 82

*Note:* For NetWare 4.11/IntraNetWare servers, do not delete the server or volume objects for the failed volume from the NDS tree; you do not want to eliminate any references other objects might have to the volume. If you must delete objects on a NetWare 4.11/IntraNetWare server, use the NetWare 4.10 procedure for recovering from a disaster.

---

**Task 1: Recover the NetWare SYS volume**

To recover a NetWare 4.11 or IntraNetWare SYS volume:

1. From the NetWorker server, perform a directed recover to recover the failed server’s Server Specific Info (SSI) files from a tape backup to a functioning NetWorker for NetWare client.

   The server-specific information files (SERVDATA.NDS, DSMISC.LOG, VOLSINFO.TXT, STARTUP.NCF, and AUTOEXEC.NCF) are recovered to a subdirectory under SYS:\SYSTEM on the client you have selected. This subdirectory is given a DOS 8.3 name derived from the source server name.

   *Note:* For NetWare 4.11/IntraNetWare servers, do not delete the server or volume objects for the failed server from the NDS tree. You do not want to eliminate any references other objects might have to the server. If objects were deleted from the NDS tree, use the NetWare 4.10 procedure for recovering from a disaster.

2. If the failed server held a master replica, use NDS Manager or dsrepair to designate a new master replica on a different server in the replica ring. To determine which replicas were stored on the failed server, refer to DSMISC.LOG.

3. If the failed server also contained any nonmaster replicas, use NDS Manager or dsrepair on the servers containing master replicas to remove the failed server from the replica ring.
4. Use `dsrepair` to perform an unattended full repair to ensure the ring is functioning properly.

Refer to DSMISC.LOG to determine which replicas were stored on the failed server. If DSMISC.LOG shows that no other server has exactly the same replicas as the failed server, run `dsrepair` on any servers containing replicas of partitions on the failed server.

5. Shut down the failed server and replace any damaged hardware. To replace a hard drive, install a drive that is the same size or larger.

**Task 2: Reinstall the operating systems**

To reinstall the operating systems:

1. Format the DOS partitions and reinstall DOS.

   **Note:** Use the DOS Time command to ensure that the computer is set to the correct time to avoid time synchronization errors.

2. Reinstall NetWare 4.11, NetWare 5.0, or IntraNetWare and NDS on the repaired or replaced server. Run `install` or `nwconfig`, select Custom Install, and follow the directions on the screen:

   a. When prompted, enter the same server name and internal IPX number that the server had prior to the failure. Use the `STARTUP.NCF` and `AUTOEXEC.NCF` files included with the server-specific information for needed information.

   b. After the preliminary files are copied, the Choose a Directory Tree dialog box appears. Press F5 to recover NDS (option listed at the bottom right of the screen).

   c. A new window displays two options:

      - A: (the default)
      - Press F3 to specify a different path

      If the Server Specific Info files are contained on diskette, insert the diskette into drive A: and press Enter. Otherwise, press F3 and enter the path to the Server Specific Info files recovered in "Task 1: Recover the NetWare SYS volume".

   d. A Remote Server Authentication login dialog box is displayed. Log in. When prompted, enter the Directory tree name.

   e. Press Enter, and both the files and NDS are copied to the new server. DSMISC.LOG, VOLSINFO.TXT, and AUTOEXEC.NCF are copied to the SYS:SYSTEM directory. STARTUP.NCF is copied to the C:\NWSERVER directory.

      The NDS recovery uses the information from SERVDATA.NDS (TSANDS.NLM is not needed). NDS is now fully functional on the server, but the partitions and replicas must still be reestablished.

   f. When prompted, insert the NetWare License diskette for the server into the diskette drive.

   g. Edit the STARTUP.NCF and AUTOEXEC.NCF files.

   h. If either the STARTUP.NCF or the AUTOEXEC.NCF files have changed because they were backed up with the server-specific information, both the original and the new files are displayed for you to compare and make edits as necessary. If the current files are the same as the original files, only the current files are displayed.

      The server now contains all the files necessary to perform an SMS remote file system recover.
3. To finish the installation, complete either:
   a. Press **Enter** to exit the utility.
      
      NetWare will not copy the remaining system and public files but will exit the utility. These files should be recovered from a backup.
   b. Press **F3** to continue installation.
      
      Wait while the utility copies the remaining system and public files, and then exit.

**Task 3: Complete the NetWare SYS volume recovery**

This section describes how to complete the recovery of the 4.11 SYS volume.

To complete the recovery of the 4.11 SYS volume:

1. Load the required namespace modules for each recovered volume. Use the VOLSINFO.TXT file to determine which namespaces need to be loaded (MAC.NAM, OS2.NAM, and so on).

2. Load the file-system TSA specific to your version of NetWare by entering one of these commands on the repaired or replaced server:

   ```
 LOAD TSA410
 LOAD TSA500
   ```

3. Recover the file system for each volume affected by the failure. Do not recover the Schema and [Root]; they will be recovered from a replica. You also do not need to recover Server Specific Info again. When prompted, suppress further prompting and overwrite files.

   If the failed server had non-SYS volumes that were not affected by the failure, no further action is needed because the SERVDATA.NDS file preserves the trustee assignments on these other volumes.

4. Shut down and restart the server.

5. Use NDS Manager or `dsrepair` to re-establish replicas on the failed server. Use DSMISC.LOG to view a copy of the replica list that resided on the server at the time of backup.

6. Verify the recovered data. From a workstation, use the Novell NWAdmin32 or the `rights /T /S` and `ndir` commands to check the data, trustee assignments, file ownership, and other related information.
This chapter provides the instructions necessary to recover NetWorker clients and storage nodes, from any supported operating system. The procedures describe, in general terms, what you should do and provides examples where appropriate. In some cases, specific operating systems require unique procedures and, wherever necessary the operating system is specified in the procedure heading.

This chapter includes these procedures:

- Recovering a UNIX NetWorker client and storage node .................................................  84
- Recovering a Windows NetWorker client or storage node ..............................................  89
- Recovering a Mac OSX NetWorker client .......................................................................  98
- De-duplication and Avamar server disaster recovery ....................................................  101
Recovering a UNIX NetWorker client and storage node

The storage node allows you to access the volumes on which the backups for all of the network computers reside. If the storage node experiences a disaster, it must be recovered before you can recover application and user data to other computers on the network.

These sections provide information on recovering a NetWorker client:

- “NetWorker bare metal recovery (BMR) recovery” on page 84
- “Prerequisites” on page 84
- “Recovering a NetWorker client” on page 85
- “Recovering a NetWorker storage node” on page 86

NetWorker bare metal recovery (BMR) recovery

A BMR recovery enables the restoration or migration of a server from one hardware type to another. This type of recovery begins with the HomeBase Server and the profile data that is gathered and includes the filesystem and application data restore from the NetWorker server through the Console server.

HomeBase Server installation is separate from NetWorker server installation. The HomeBase Server must be configured and available when:

- A BMR client resource is created.
- BMR backup data (profiles) are generated from NetWorker clients.

See the EMC HomeBase product documentation for details about HomeBase Server installation, profile management, and recovery specifics. Enabling the back up and restore of profiles for BMR recovery is described in the NetWorker Administrator’s Guide.

Prerequisites

Before recovering either a NetWorker client or storage node, ensure that the UNIX operating system is installed on the computer and that the NetWorker server is functioning and available on the network.

Note: Chapter 5, “Recovering a NetWorker Server,” provides instructions to recover the NetWorker server.

Additionally, ensure that you have the:

- Hostname of the NetWorker server.
- Version and patch level of the NetWorker client or storage node software that was on the computer before the disaster occurred.
- Name of any links to NetWorker directories. An example of a typical link from a NetWorker directory to a user directory is /nsr to /var/nsr.
Recovering a NetWorker client

This section describes how to recover a NetWorker client computer back to the original computer or to a different computer.

To recover a NetWorker client, complete the following tasks:

- “Task 1: Reinstall NetWorker client” on page 85
- “Task 2: Recover the application and user data” on page 85
- “Testing the backup and recovery” on page 88

Task 1: Reinstall NetWorker client

To reinstall the NetWorker client software:

1. Install the latest version of the NetWorker client or the same version as the one running on the NetWorker server.

Note: If you need to update the client software, first recover the client to its original state, and then perform the update.

2. Reinstall any NetWorker backup utility patches that were installed prior to the disaster.

3. Re-create any links to NetWorker directories.

4. (Optional) Use the `nwrecover` program to perform a test recovery to ensure that the recovery process is functioning properly.

Task 2: Recover the application and user data

To recover the application and user data:

1. To determine which volumes contain the application and user data backups for this computer, you can either mark the files you want to recover in `nwrecover` and then go to the required volumes option, or use the `mminfo -avot` command on the NetWorker server, for example:

   ```
 mminfo -avot -c client_name
   ```

   where `client_name` is the hostname of the computer whose application and user data is to be recovered.

2. Start the `nwrecover` program on the client computer whose application and user data you are recovering.

3. Mark all of the directories and files to be recovered:

   Note: Overwriting operating system files may cause unpredictable results. The following list contains examples of operating system files that you should consider not overwriting. To determine all of the operating system files that should not be overwritten during a recovery, refer to the operating system documentation.

   - Operating system boot files, such as:
     - `/unix`
     - `/boot`
     - `/etc/default/boot`
     - `/stand/vmunix`
Other operating system files. For example, some of the files not to overwrite on the Solaris platform include:

- /dev directory
- /etc/path_to_inst
- /etc/name_to_major
- /etc/mnttab
- /etc/dfs/sharetab
- /etc/mttab
- /kernel
- /usr/kernel
- /etc/saf/zsmon/_pmpipe
- /etc/sysevent/piclevent_door

Instead of overwriting these files, unmark the directory and when the restore has completed, if required, run another restore and mark only these files/directories, then choose to relocate or rename them. The NetWorker Administrator’s Guide provides more information about renaming files during recovery:

1. From the **Options** menu, select **Recover Options** to set the recover options.
2. In the **Recover Options** dialog box, select **Overwrite Existing File**.

   **Note:** If you did not set the recover options, you must select the **Overwrite Existing File** option when the **Naming Conflict** dialog box appears. To enable automatic overwriting of files with the same name, select the **Suppress Further Prompting** option in the **Naming Conflict** dialog box.

3. Select **Start**.
4. When the recovery is complete, reboot the computer.

   The computer should now be recovered.

   **Note:** By default, the directed recover option is enabled when you install the NetWorker client. If the directed recover option was disabled on the client before the disaster, set this option to disable directed recoveries to this client. This option is set through the nsradmin command. The NetWorker Administrator’s Guide provides more information about setting the disable directed recover option on a NetWorker client.

5. Perform a test of the NetWorker client backup and recovery. “Testing the backup and recovery” on page 88 provides instructions.

---

### Recovering a NetWorker storage node

This section describes how to recover a NetWorker storage node computer back to the original computer or to a different computer.

To recover a NetWorker storage node, complete the following tasks:

- “Task 1: Reinstall the NetWorker storage node” on page 87
- “Task 2: Recover the application and user data” on page 87
- “Testing the backup and recovery” on page 88
Task 1: Reinstall the NetWorker storage node

To reinstall the NetWorker storage node software:

1. Reinstall the same version of the NetWorker storage node software into its original location.

   **Note:** To upgrade the storage node software, first recover the storage node to its original state, and then perform the upgrade.

2. Reinstall any NetWorker backup utility patches that were installed prior to the disaster.
3. Re-create any links to NetWorker directories.
4. Optionally, use the `nwrecover` program to perform a test recovery to ensure that the recovery process is functioning properly.

   **Note:** The NetWorker client software is also installed when you install the storage node software.

The storage node can now access volumes that contain backups for other computers on the network. These volumes contain the application and user data that are required to fully recover computers that were protected with the NetWorker client software.

“Recovering a NetWorker client” on page 85 provides instructions to recover the application and user data for other NetWorker clients.

“Task 2: Recover the application and user data” on page 87 provides instructions to recover application and user data that was on the storage node computer.

Task 2: Recover the application and user data

To recover the application and user data that was on the NetWorker storage node computer:

1. To determine which volumes contain the application and user data backups for this computer, use the `mminfo -avot` command on the NetWorker server, for example:

   ```bash
 mminfo -avot -c storage_node_name
   ```

   where `storage_node_name` is the hostname of the computer whose application and user data you are recovering.

   **Note:** This information can also be obtained in nwrecover through required volumes after the data to be recovered is marked. This method may give you a more accurate report of the needed volumes, since mminfo outputs can show multiple tapes for a backup that are not necessarily needed to restore what has been marked.

2. Start the `nwrecover` program on the storage node computer.
3. Mark all of the directories and files to be recovered:

   **Note:** Overwriting operating system files may cause unpredictable results. The following list contains examples of operating system files that you should consider not overwriting. To determine all of the operating system files that should not be overwritten during a recovery, refer to the operating system documentation.

   - Operating system boot files, such as:
     - `/unix`
     - `/boot`
     - `/etc/default/boot`
     - `/stand/vmunix`
• Other operating system files. For example, some of the files not to overwrite on the Solaris platform include:

  – /dev directory
  – /etc/path_to_inst
  – /etc/name_to_major
  – /etc/mnttab
  – /etc/dfs/sharetab
  – /etc/rmtab
  – /kernel
  – /usr/kernel
  – /etc/saf/zsmon/_pmpipe
  – /etc/sysevent/piclevent_door

Instead of overwriting these files, unmark the directory and when the restore has completed, if required, run another restore and mark only these files/directories, then choose to relocate or rename them. The NetWorker Administrator’s Guide provides more information about renaming files during recovery:

1. From the Options menu, select Recover Options to set the recover options.
2. In the Recover Options dialog, select Overwrite Existing File.

  **Note:** If you did not set the recover options, you must select the Overwrite Existing File option when the Naming Conflict dialog appears. To enable automatic overwriting of files with the same name, select the Suppress Further Prompting option in the Naming Conflict dialog.

3. Select Start.
4. Reboot the computer when the recovery is complete. The computer should now be recovered.

  **Note:** By default, the directed recover option is enabled when you reinstall the NetWorker client. The bootstrap backup restores the res directory, which in turn contains the nsrla database directory. The nsrla database contains the setting for directed recoveries, so this setting should be preserved with the bootstrap restore. The NetWorker Administrator’s Guide provides more information about setting the directed recover option on the NetWorker client.

5. Perform a test of the NetWorker storage node backup and recovery. “Testing the backup and recovery” on page 88 provides instructions.

---

**Testing the backup and recovery**

To test the NetWorker client and storage node backup and recovery process:

1. Perform a test backup by using each of the backup utilities incorporated into the backup solution.

2. Perform a test recovery by using the utility used to back up the data. The NetWorker Administrator’s Guide provides details.
Recovering a Windows NetWorker client or storage node

This section explains how to recover a Windows NetWorker client host computer or a Windows 2003 or Windows 2000 storage node host computer.

Note: For Windows 2003 and Windows XP Professional systems, perform tasks 1 through 4 that appear on the following pages — but do so only as a last resort for recovering a NetWorker client. For a NetWorker client, use the ASR recovery method if possible. “Performing a Windows ASR recovery” on page 94 contains more information. You cannot use the ASR recovery method for a NetWorker storage node.

Before you begin the recovery procedures, identify all EMC products (such as SmartMedia® and NetWorker Modules) and any associated patches that were installed prior to the disaster. You must reinstall any EMC backup software and patches that are unusable or appear to be damaged. For more information, refer to the appropriate product installation guide.

You can recover a NetWorker client or storage node to the original computer, or to a different computer.

To recover the client or storage node, perform the following tasks in the specified order:

◆ “Task 1: Satisfy the NetWorker client or storage node recovery requirements” on page 90.
◆ “Task 2: Reinstall the NetWorker client or storage node software” on page 90.
◆ “Task 3: Recover the NetWorker client or storage node data” on page 91
◆ “Task 4: Verify the NetWorker client or storage node recovery” on page 93

Note: Before you begin recovery of a NetWorker client or storage node, you should understand the information about SYSTEM or VSS SYSTEM save sets in the NetWorker Administrator’s Guide.

Partial recovery of a NetWorker storage node

In most cases, the NetWorker server should be fully functional before you begin recovery of its associated clients or storage nodes. However, if the storage device required for a NetWorker server recovery is connected to a remote storage node, you might have to partially recover the storage node before you can recover the NetWorker server. In that case:

◆ Reinstall the NetWorker client or storage node software to provide a storage device for the NetWorker server to use.

◆ Recover the NetWorker server. Chapter 5, “Recovering a NetWorker Server,” provides more information.

◆ Perform the remaining tasks to recover the client or storage node. “Task 3: Recover the NetWorker client or storage node data” on page 91 and “Task 4: Verify the NetWorker client or storage node recovery” on page 93 provide more information.
Task 1: Satisfy the NetWorker client or storage node recovery requirements

To recover a NetWorker client or storage node requires:

- The same version and patch level of the NetWorker software that was in use prior to the disaster.
- The installation path of the NetWorker software prior to the disaster.
- Backup or clone volumes that contain the NetWorker client or storage node data.

Note: If you routinely move NetWorker backup media to an offsite location for safekeeping, ensure that you have all necessary volumes available to avoid delays during a recovery. You can run the `mminfo -s server -mv` command from the command prompt to list the media associated with the files you intend to recover. The NetWorker Command Reference Guide provides details about the `mminfo` command.

Task 2: Reinstall the NetWorker client or storage node software

If the NetWorker client or storage node software is not properly installed and running on the host computer, you must reinstall it according to these instructions:

1. To reinstall the NetWorker client or storage node software, refer to the NetWorker Release Notice or, if using an EMC NetWorker host, the appropriate EMC NetWorker Installation Guide the appropriate EMC NetWorker Installation Guide:
   - If the NetWorker installation package (or EMC NetWorker installation kit) is available on a shared drive, reinstall it over the network.
   - Reinstall the NetWorker software to the same path location it occupied prior to the disaster.
   - To update the NetWorker software, first recover the NetWorker client or storage node to its predisaster state, then perform the update.

2. If using Fujitsu NetWorker:
   Reinstall any NetWorker Single Correction Services (EKSs) that were installed prior to the disaster.
   If using EMC NetWorker:
   Reinstall any patches (for EMC NetWorker) that were installed prior to the disaster.

3. If using Fujitsu NetWorker:
   Reinstall the license for each Fujitsu backup product. For installing of licenses, refer to the NetWorker Administrator’s Guide and the Release Notice.
   If using EMC NetWorker:
   Reinstall the temporary enabler code for each EMC backup product. For temporary enabler codes, refer to the product Installation Guide.

4. If you are recovering a NetWorker storage node, ensure that the storage devices the NetWorker server will use are correctly configured. Details are provided in the appropriate NetWorker Administrator’s Guide.

5. From the NetWorker User program, perform a test recovery to verify that the NetWorker recovery process is functioning properly.
Task 3: Recover the NetWorker client or storage node data

Recovery of volume mount points and their data requires special handling. If you attempt to recover a mount point and the mounted volume’s data in a single operation, the data will be recovered to the root of the host volume and recovery of the mount point will fail. To successfully recover the mounted volume’s data, first manually re-create the mount point. Use the same path as the original. Then perform a separate NetWorker file recovery to recover just the mounted volume’s data (without including any of the host volume’s data in the recovery).

The NetWorker Administrator’s Guide provides more information about backing up, recovering, and creating mount points.

Note: This special handling is not required when performing an ASR recovery.

To recover the NetWorker client or storage node data:

1. Log on to Windows with local administrator privileges.

   Note: Directed recovery of SYSTEM or VSS SYSTEM save sets is not supported. To recover these save sets, log onto the computer being recovered with local administrator privileges. Additionally, recover the SYSTEM or VSS SYSTEM save sets to the location that they were in before the disaster.

2. Ensure that all drives that contained system information prior to the disaster are accessible. The system information includes the boot partition, system partition, and the partition that contains the databases and database logs for the system state components.

3. Start the NetWorker User program.

4. Click the Recover button.

5. In the Source Client dialog box, select the computer you are recovering and click OK.

6. In the Destination Client dialog box, select the computer you are recovering and click OK.

7. The computer’s directory structure appears in the Recover window. Mark all appropriate save sets for recovery:

   • Windows 2003 and Windows XP Professional:
     – All local drives (except the NetWorker installation directory)
     – SYSTEM STATE:
     – SYSTEM FILES:
     – SYSTEM DB:
     Alternatively, if you are using Windows 2003 and Volume Shadow Copy Service (VSS) is licensed and enabled, or for Windows Server 2008 or Windows Vista, mark these save sets:
     – All local drives (except the NetWorker installation directory)
     – VSS SYSTEM BOOT:
     – VSS SYSTEM FILESET:
     – VSS SYSTEM SERVICES:
     – VSS USER DATA:
     – VSS OTHER:
     – VSS ASR DISK: (Windows 2003 only)
• Windows 2000:
  – All local drives (except the NetWorker installation directory)
  – SYSTEM STATE:
  – SYSTEM FILES:
  – SYSTEM DB:
  – SHAREPOINT: (for SharePoint Portal servers only)
• Windows NT 4.0:
  – All local drives (except the NetWorker installation directory)
  – SYSTEM STATE:
  – REPAIRDISK: (recover only if needed)

If you recover save sets in multiple NetWorker User operations, recover the SYSTEM STATE or VSS SYSTEM BOOT save set last to avoid booting Windows twice.

NetWorker software backs up user profiles in the save set that corresponds to the disk drive on which they are located (for example, the C: save set). To recover user profiles, recover the save set in which they were saved. User profile folders are located in:

• %SystemDrive%\Documents and Settings for Windows 2003, Windows 2000, and Windows XP Professional
• %SystemRoot%\profiles for Windows NT 4.0

8. From the Option menu, select Recover Options.

9. In the Recover Options dialog box, select Overwrite Existing File.

   If you do not select Overwrite Existing File, the recovery process pauses before any existing files are overwritten. A Naming Conflict dialog box appears, prompting you to indicate how the NetWorker software should resolve filename conflicts.

10. Click Start to begin the recovery.

   Note: Files in the Windows Recycle Bin are not password protected. If the Password Protection dialog box appears, select Recover > OK to recover them.

11. Check the log file to verify that no error messages were generated during the recovery sessions. The NetWorker software logs information about the recovery process to the <NetWorker_install_path>\logs file. This file is overwritten each time a recovery is performed. If there are error messages in the log file, you might need to run the recovery again after addressing the source of the errors.

12. After recovery, reboot the computer to completely recover the system-protected files and restart services that were automatically stopped prior to recovery.

   Note: If you perform a complete reinstallation of the Windows operating system during a disaster recovery, the display resolution will be set to default values when the disaster recovery is complete. To reconfigure to the previous display settings, use the Control Panel Display tool. This problem does not occur if you perform an ASR recovery on a Windows 2003 or Windows XP Professional NetWorker client.

By default, the directed recover option is enabled when you install the NetWorker client. The bootstrap backup restores the res directory, which in turn contains the nslra database directory. The nslra database contains the setting for directed recoveries, so this setting should be preserved with the bootstrap restore. The NetWorker Administrator’s Guide provides more information about setting the directed recover option on the NetWorker client.
Task 4: Verify the NetWorker client or storage node recovery

To verify the NetWorker client or storage node recovery:

1. Reboot the NetWorker client or storage node host computer and verify that the NetWorker Remote Exec service has started.

2. Use the Windows Event Viewer to examine the event logs for errors. In particular, check for:
   • Service startup errors related to the Windows system state
   • Errors regarding the recovery of Windows system-protected files

   Information about how the NetWorker software handles the Windows system state and system-protected files is provided in the NetWorker Administrator’s Guide.

3. Ensure that the storage node and the NetWorker server can detect the storage devices the NetWorker server is to use.

4. Perform a test recovery by using each of the Fujitsu backup products you have reinstalled. Recover data with the Fujitsu product used to back it up. Refer to the product documentation as necessary.

5. Perform a test backup to the NetWorker server to ensure that the connection between the NetWorker client or storage node and the NetWorker server is working properly.

6. Verify that any applications (such as Microsoft Office) that were running prior to the disaster have been properly recovered. To verify this, run each application and open a previously saved document.

7. To use Active Desktop, install it after you have recovered all of the computer’s data.

8. If the NetWorker client or storage node computer was previously configured as a domain controller:
   • Windows 2000 — Verify that the drives configured to store the Active Directory database and log files have been recovered.
   • Windows NT 4.0 — If the computer is a Primary Domain Controller, synchronize it with the domain. If the computer is a Backup Domain Controller, synchronize it with the Primary Domain Controller.

   Appendix “Additional Features of the Microsoft Windows Server” in the NetWorker Administrator’s Guide provides more information on the recovery of domain controllers, including the recovery of a Windows 2003 client that is also a Domain Controller.

Performing a Cluster Writer recovery for Windows Server 2008

There are two recovery modes available for Windows Server 2008:

- Authoritative restore, which uses command-line only
- Non-authoritative restore, which uses the NetWorker user interface or command line.

Nonauthoritative restore (default)

Use this mode if the cluster is completely lost. In such cases, the cluster service does not run on either node, and the cluster database is missing or corrupted. Nonauthoritative restores restore the cluster but do not restore a particular version of the database. After the nonauthoritative restore is complete, you must follow up with an authoritative restore to recover a specific version of the database. The NetWorker software performs an nonauthoritative restore by default. You must ensure that the VSS SYSTEM BOOT saveset is also selected.
1. In the NetWorker User program, select the following save sets:
   a. The entire VSS SYSTEM BOOT save set.
   b. In the VSS SYSTEM SERVICES system save set, select Cluster Writer.
2. Start the recovery.
3. Reboot the system when prompted.
4. Repeat Step 1 and Step 2 on the other nodes as needed.

**Authoritative restore**

Use this mode when the cluster configuration is lost, but the cluster is otherwise functioning normally. For example, when a cluster resource was accidentally deleted or you want to revert to a previous cluster configuration. The cluster must be functioning normally on all nodes.

*Note:* Authoritative restores of the Cluster Writer are supported only for Windows Server 2008.

**Authoritative recovery**

To perform an authoritative recovery from a NetWorker release 7.4 Service Pack 2 or later backup of a Windows Server 2008 cluster database, you must use a command line. You cannot perform this authoritative recovery from the NetWorker User program.

To perform an authoritative restore of the NetWorker release 7.4 Service Pack 2 or later Cluster Writer:

1. Ensure that the cluster service is running in the local system.
2. Ensure that the cluster service is running on all nodes.
3. Type the following string on the command line:

```
recover -s NWServername -U -N "VSS SYSTEM SERVICES:\Cluster Database"
```

*Note:* Authoritative restores of the Windows 2008 cluster writer will restart the cluster service on all nodes in the cluster.

**Performing a Windows ASR recovery**

Microsoft ASR is a feature of the Windows 2003 and Windows XP Professional operating systems. More information about NetWorker software support for ASR, including procedures for performing ASR backups and creating an ASR disk is provided in the NetWorker Administrator’s Guide.

The ASR recovery method is supported only for NetWorker clients on Windows 2003 and XP Professional platforms. It is *not* supported for NetWorker clients operating in a Windows 2003 Microsoft Cluster Server (MSCS) environment.

To recover a NetWorker server or storage node, or NetWorker clients operating in a Windows 2003 MSCS environment, you must use the legacy NetWorker disaster recovery method.

To use the ASR recovery method, perform these tasks in the specified order:

- “Task 1: Perform an ASR recovery of the NetWorker client computer” on page 95
- “Task 2: Recover components that require special handling” on page 96
- “Task 3: Verify the NetWorker client recovery” on page 97
Limitations of the operating system’s recovery CD-ROM

Many computer manufacturers, such as Dell, Hewlett-Packard, Compaq, and IBM, provide a recovery CD-ROM or DVD with each system, which typically includes the Windows operating system installation files and any additional software that was included with the system. These recovery disks cannot be used to perform an ASR recovery.

**Note:** To perform an ASR recovery, you must have an official Microsoft Windows installation CD-ROM for the version of Windows you are recovering. If you have only the recovery CD-ROM supplied by the original equipment manufacturer (OEM) that includes the Windows installation files, contact your OEM immediately. Refer to the OEM documentation as necessary.

ASR recovery requirements

To perform an ASR recovery of a NetWorker client host computer:

- The ASR disk for the computer you are recovering. If a current ASR disk or ASR save set is not available for the failed NetWorker client host computer, you must use the legacy NetWorker disaster recovery method. “Recovering a Windows NetWorker client or storage node” on page 89 provides a guide to the required procedures.
- The official Microsoft Windows 2003 or Windows XP Professional installation CD-ROM for the computer you are recovering.
- The latest NetWorker backup for the computer you are recovering.

**Note:** To avoid delays during a recovery, if you routinely move NetWorker backup media to an offsite location for safekeeping, ensure that all necessary volumes are available. To list the media associated with the files to be recovered, run `mminfo -mv` from the command prompt. The *NetWorker Command Reference Guide* provides more information about the `mminfo` command.

Task 1: Perform an ASR recovery of the NetWorker client computer

To perform an ASR recovery of the NetWorker client computer:

1. On the NetWorker client computer you are recovering, boot from the Windows 2003 or Windows XP Professional installation CD-ROM.

   **Note:** You may need to run the BIOS setup program to configure the computer to boot from the CD-ROM drive. For the procedure, refer to the computer manufacturer’s documentation.

2. Watch closely at the beginning of the boot process. If prompted, press a key to boot from the CD-ROM drive.

3. During the text-mode phase of Windows setup, watch the lower portion of the screen. When prompted, press [F2] to display the ASR Recovery menu. Follow the instructions on the screen.

4. When prompted, insert the ASR disk into drive A: and press a key to continue. ASR formats the system partition, copies files, and begins the Windows installation.

   **Note:** Due to a problem with Microsoft Windows XP Professional, when you are prompted to insert the ASR disk and press a key to continue, you may need to press a key several times before the system recognizes the disk and proceeds with the recovery. This problem does not occur on Windows 2003 systems.

5. If you did not select the **Pause During Recovery** option while creating the ASR disk, a fully automated recovery will be performed; there will be no pause and you will not be prompted to select which save sets to recover.
If you selected the **Pause During Recovery** option while creating the ASR disk, during the graphical phase of Windows setup, the **NetWorker ASR Client** dialog box appears. Expand **My Computer** and mark the save sets to be recovered. For example, mark these save sets:

- C: 
- D: 
- SYSTEM STATE: 
- SYSTEM DB: 
- SYSTEM FILES: 

If Volume Shadow Copy Service (VSS) is licensed and enabled, mark the following VSS save sets:

- VSS SYSTEM BOOT: 
- VSS SYSTEM FILESET: 

**Note:** VSS USER DATA, VSS OTHER, and VSS SYSTEM SERVICES do not appear because they are not required to boot from ASR mode.

By default, the displayed save sets represent the most recent backup. You can view and select previous backups by entering a new browse time in the Browse Time field. The browse time must be entered in time and date the nsr_getdate format; for example, a date can be specified using the format mm/dd/yy or monthname dd, yy. More information about nsr_getdate is provided in the **Command Reference Guide**.

6. Select **Continue** to complete the recovery. ASR finishes installing Windows, and then automatically runs a NetWorker recovery of the save sets selected in the previous step.

**Note:** The VSS components and certain legacy components cannot be correctly recovered during an ASR recovery. “Task 2: Recover components that require special handling” on page 96 provides instructions to ensure that all necessary components are properly recovered.

### Task 2: Recover components that require special handling

Due to limitations in Microsoft ASR functionality, the following system state components cannot be correctly recovered during an ASR recovery:

- **COM+ Registration Database**
- **Disk Quota Database**
- **Windows Management Instrumentation Database**
- **VSS writers**

If the NetWorker client being recovered uses any of these components, the following procedures must be performed after an ASR recovery.

If the NetWorker client being recovered does **not** use any of these components, skip this task and proceed to “Task 3: Verify the NetWorker client recovery” on page 97.

For NetWorker clients with components that require special handling, do the following after an ASR recovery:

1. Log in with administrator privileges to the target computer.
2. Start the NetWorker **User** program.
3. Click the **Recover** toolbar button.
4. In the **Source Client** dialog, click **OK** to select the local client.
5. In the **Destination Client** dialog, click **OK** to select the local client.
6. In the **Recover** window, select the SYSTEM STATE save set and check for the presence of the COM+ Registration Database component. If it is present, mark the SYSTEM STATE save set for recovery. Alternatively, if VSS is licensed and enabled, mark all VSS save sets for recovery, except VSS ASR DISK.

7. In the **Recover** window, select the SYSTEM DB save set and check for the presence of the Disk Quota Database and the Windows Management Instrumentation Database. If they are present, mark the SYSTEM DB save set for recovery.

   **Note:** If VSS is licensed and enabled, skip this step.

8. If you marked any save sets for recovery, click **Start** to begin the recovery.

**Task 3: Verify the NetWorker client recovery**

To verify the NetWorker client recovery:

1. Reboot the NetWorker client host computer and verify that the NetWorker Remote Exec and NetWorker Power Monitor services have started.

   **Note:** You can disable the NetWorker Power Monitor service if it is not needed. The *NetWorker Administrator’s Guide* provides more information.

2. Use the **Windows Event Viewer** to examine the event logs for errors. In particular, check for the following:

   • Service startup errors related to the Windows system state
   • Errors regarding the recovery of Windows system-protected files

   Information about how the NetWorker software handles the Windows system state and system-protected files is provided in the *NetWorker Administrator’s Guide*.

   **Note:** VSS is unavailable during an ASR recovery. Once an ASR recovery is complete and the system is rebooted, VSS is available for proper recovery of the writers.

3. Verify that any applications (such as Microsoft Office) that were running prior to the disaster have been properly recovered. To verify this, start each application and open a previously saved document.

**Recovery of DHCP and WINS databases**

If you are using Windows 2003 and are using ASR backup and recovery or have VSS licensed and enabled, no special handling is required to back up and recover DHCP and WINS databases. However, if you are not using ASR backup and recovery or do not have VSS licensed and enabled, use this section to learn how to back up and recover the DHCP and WINS databases.

**Note:** To recover the DHCP database, you must have a NetWorker backup that includes the %SystemRoot%\System32\dhcp directory. To recover the WINS database, you must have a NetWorker backup that includes a local disk backup of the WINS database. Instructions on configuring DHCP and WINS servers to include these databases in scheduled NetWorker backups is provided in the *NetWorker Administrator’s Guide*. 
Recover a DHCP database

To recover a DHCP database:

1. Use the NetWorker User program to recover the backup of the %SystemRoot%\System32\dhcp directory on the DHCP server.

2. Use the Microsoft DHCP administrative tools to recover the DHCP database. For detailed instructions, refer the DHCP database recover procedures in the Microsoft documentation.

Recover a WINS database

To recover a WINS database:

1. Use the NetWorker User program to recover the backup of the WINS database to a drive on the WINS server.

2. Use the Microsoft WINS administrative tools to recover the WINS database. For detailed instructions on using Microsoft WINS administrative tools, refer to the Microsoft documentation.

Recovering a Mac OS X NetWorker client

These sections provide information on recovering a NetWorker client:

- “Prerequisites” on page 98
- “Recover a NetWorker client” on page 98

Prerequisites

Before recovering the NetWorker client, ensure that the Mac OS X operating system is installed on the computer and that the NetWorker server is functional and available on the network.

Additionally, ensure that you have the:

- Hostname of the NetWorker server.
- Version and patch level of the NetWorker client or storage node software that was on the computer before the disaster occurred.
- A successful backup of the Open Directory databases. The NetWorker Administrator’s Guide provides more information about backing up the Open Directory databases.

Recover a NetWorker client

This section describes how to recover a NetWorker client to the original computer or to a different computer of the same operating system.

To recover a NetWorker client, complete these tasks:

- “Task 1: Reinstall the NetWorker client software” on page 99
- “Task 2: Recover the application and user data” on page 99
- “Task 3: Restore Open Directory Database files (Mac OS X Server)” on page 99
- “Task 4: Perform a test backup and recovery” on page 100
Task 1: Reinstall the NetWorker client software

To reinstall the NetWorker client software:

1. Reinstall the same version of the NetWorker client.

   **Note:** To upgrade the client software, first recover the client to its original state, and then perform the upgrade.

2. Reinstall any NetWorker client patches that were installed before the disaster.

3. (Optional) Use the `recover` program to perform a test recovery to ensure that the recovery process is functioning properly.

Task 2: Recover the application and user data

To recover the application and user data:

1. To determine which volumes contain the application and user data backups for this computer, use the `mminfo -avot` command on the NetWorker server, for example:

   ```
 $ mminfo -avot -c client_name

 where `client_name` is the hostname of the computer whose application and user data are being recovered.
   ```

2. Open a `recover` prompt on the NetWorker client with this command:

   ```
 $ recover

 where `recover` is the hostname of the computer.
   ```

3. At the `recover` prompt, browse backed-up Mac OS X data by using traditional UNIX file-system navigation commands.

4. Add all the directories and files to be recovered, by entering the `add` command, for example:

   ```
 recover> add directory_name

 To automatically overwrite existing files, enter the `force` option with the `add` command.
   ```

5. Start the recovery by entering this command at the `recover` prompt:

   ```
 recover> recover
   ```

   **Note:** When recovering application and user data, do not recover any Mac OS X operating system boot files that should not be overwritten. For example, do not recover the Mac OS X operating system kernel, `/mach_kernel`.

Task 3: Restore Open Directory Database files (Mac OS X Server)

This procedure assumes the NetWorker client was configured to backup Open Directory files using a `saveppnc` script as described in the *NetWorker Administrator's Guide*. You must be a NetWorker administrator to perform this procedure.

To restore Open Directory database files after a catastrophic failure requiring reinstallation of Mac OS X server software:

1. Ensure the host is configured as a standalone server:

   a. Open `Server Admin`.

   b. Select `Open Directory` and click `Settings`.

   c. Click `General`, and change `Role` to `Standalone Server`.

2. Open a Terminal session as root.
1. If your LDAP server uses SSL, restore the Open Directory Password server database using this command:

   ```bash
 # mkpassdb -mergedb /var/backups/networker.odpdb
   ```

2. Restore the local NetInfo domain using this command:

   ```bash
 # niload -r / . < /var/backups/networker.nidump
   ```

3. Use the recover program to restore the Open Directory preferences:

   ```bash
 # recover -af /Library/Preferences/DirectoryService
   ```

4. Start the LDAP server:

   ```bash
 # /sbin/SystemStarter start LDAP
   ```

### Task 4: Perform a test backup and recovery

To test the NetWorker client backup and recovery process:

1. Perform a test manual backup by using the backup commands.
2. Perform a test recovery by using the recover commands.

The *NetWorker Administrator’s Guide* provides additional information on testing backup and recovery configurations.
De-duplication and Avamar server disaster recovery

When the NetWorker software is used in conjunction with EMC Avamar® de-duplication technology, the failure of the primary Avamar server and failover to the replication node requires immediate action to ensure that de-duplication backups of clients configured to use the failed primary Avamar server continue unabated.

Note: For instructions about recovering data from the replication node after failure of the primary server, see the NetWorker Administrator's Guide.

In the event of the failure of your primary Avamar server, you should contact EMC professional services as quickly as possible to bring the server back online. After the server is brought back online, de-duplication backups invoked via the NetWorker software will proceed normally. However, if you need to perform de-duplication backups during the time that the primary server is off line, you must reconfigure your NetWorker de-duplication clients to use the replication node, rather than the primary Avamar server, for backup.

You must have the replication node configured as a NetWorker de-duplication node prior to reconfiguring your NetWorker de-duplication clients to use the replication node for backups. Furthermore, in order to guarantee that backups from the replication node can be recovered via the NetWorker software, you must configure the replication node on the NetWorker server prior to performing the backup. The NetWorker Administrator's Guide contains further information about configuring replication nodes.

Reconfiguring NetWorker de-duplication clients to use the replication node for backups

To reconfigure NetWorker de-duplication clients to use the replication node for backups:

1. Log in as root or as Windows administrator on the NetWorker server.
2. Type this at the command prompt:
   
   nsradmin
   
   The nsradmin prompt appears.
3. Limit the query to clients configured to use the primary Avamar server that has failed as their de-duplication node by typing this at the nsradmin prompt:
   
   . type: NSR client; De-duplication node: de-duplication_node_name
   
   Where de-duplication_node_name is the name of the primary Avamar server that has failed.
4. Change the De-duplication attribute for the clients included in the query at Step 3 to the replication node by typing this at the nsradmin prompt:
   
   update De-duplication node: replication_node_name
   
   Where replication_node_name is the name of the Avamar replication node.

After your primary Avamar server has been brought back online, repeat this procedure to change the De-duplication node attribute to point to the primary Avamar server again.
This chapter describes how to recover the NetWorker Management Console (NMC) server. It includes this section:

- Recovering the NMC server ................................................................. 104
Recovering the NMC server

This section describes how to recover from the NMC server from either a UNIX or Windows operating system environment. Regardless of the operating system in use, you perform the steps identified in Table 14 on page 104 to recover the NMC server.

<table>
<thead>
<tr>
<th>Step</th>
<th>Activity</th>
<th>On...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reinstall or recover the NetWorker software.</td>
<td>1. The appropriate NetWorker Installation Guide for instruction on reinstalling NetWorker software. 2. The recovery procedures provided in Chapter 5, “Recovering a NetWorker Server.”</td>
</tr>
<tr>
<td>2</td>
<td>Reinstall the NetWorker Management Console software.</td>
<td>The appropriate NetWorker Installation Guide for instruction on reinstalling the NetWorker Management Console software.</td>
</tr>
<tr>
<td>3</td>
<td>Recover the NMC server database.</td>
<td>“Recovering the console server database” on page 104.</td>
</tr>
</tbody>
</table>

Note: During recovery of the NMC server database, no console graphical interface is available and, consequently, messages such as mount requests can not be addressed from the console.

For UNIX, you must use the `nsrwatch` command to view messages, and the use commands such as `nsrjb`, to address those issues. For Windows, monitor the daemon log file for messages. More information about `nsrwatch`, `nsrjb`, and other NetWorker commands, is provided in the Command Reference Guide.

Recovering the console server database

This section describes how to recover lost data whenever the NMC server database becomes corrupted or if the NMC server is damaged. You must reinstall or recover the NetWorker client software before you attempt to recover the console database.

The NetWorker Administrator’s Guide contains more information about backing up the console database.

To recover the console server database:

1. Stop the console server if it is currently running.
2. If you are operating in:
   b. A UNIX environment, set the appropriate library path environment variable to the following:

   \[\text{Console_install_dir/sybasa/lib64} \]
   \[\text{Console_install_dir/sybasa/lib (Linux)} \]

   The environment variable to set varies by platform:
   - Solaris/Linux: LD_LIBRARY_PATH
   - AIX: LIBPATH
   - HP-UX: SHLIB_PATH
3. At the command prompt, enter the `recoverpsm` command:

   **recoverpsm** recover options

   where **recover options** can be:
   - `-s` — Specifies the name of the NetWorker server.
   - `-c` — Specifies the name of the NetWorker client.
   - `-f` — Overwrites the existing database file, if one is present.
   - `-t` — Specifies the point in time of the backup that will be recovered. If this is not specified, the most recent backup is used.
   - `-d` — Specifies the destination directory where the database files will be recovered. If this is not specified, the database is restored to the current console server database directory.
   - `-S` — Use this option to specify the name of the previous console server host if the console server has been moved to a different machine after the last backup. The format of the database server name is `gst_on_<NMC server host name>`. `<NMC server host name>` should be the computer's "short name;" for example, if the computer name is `wolf.fujitsu.com`, the proper format for this option would be `-S gst_on_wolf`.
   - `-O` — Use this option to omit the recovery of the database credential file if, after the last backup, the console server has been moved to a different machine or is being recovered to a different location. If you are using the `-O` option, skip Step 4 and continue with Step 5.
   
   The *NetWorker Command Reference Guide* contains more information about the **recoverpsm** command.

4. If the operating system has not been reinstalled and you did not use the `-O` option with the **recoverpsm** command:
   - If you were using LDAP authentication, you can use the **recover** command to recover the cst directory, which is backed up under the saveset named `CONSOLE_BACKUP_FILES`.

5. If the operating system has been reinstalled or if you are recovering the Console server to a different host:
   a. Use the **recover** command or the *NetWorker User* or **nwrecover** command to recover the gstd_db.conf configuration file. This will maintain your existing database login credentials. For NetWorker 7.5 and greater, the `gstd_db.conf` file is located in the saveset named `CONSOLE_BACKUP_FILES`.
   
   b. If you were using LDAP authentication, you must configure your LDAP authorities again on the recovered Console server using the Configure Login Authentication wizard.

6. Restart the console server.
This glossary contains terms related to disk storage subsystems. Many of these terms are used in this manual.

<table>
<thead>
<tr>
<th><strong>Term</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ACL</strong></td>
<td>Access Control List. This is a list that specifies the permissions assigned to a specific file or directory.</td>
</tr>
<tr>
<td></td>
<td>To recover a file that has an associated ACL, you must either be logged in to the system as root, as Administrator, or as the file’s owner.</td>
</tr>
<tr>
<td><strong>active group</strong></td>
<td>A NetWorker backup group that has its Autostart attribute enabled.</td>
</tr>
<tr>
<td><strong>administrator</strong></td>
<td>The person normally responsible for installing, configuring, and maintaining NetWorker software.</td>
</tr>
<tr>
<td><strong>Administrators group</strong></td>
<td>A Microsoft Windows user group whose members have the rights and privileges of users in other groups, plus the ability to create and manage the users and groups in the domain.</td>
</tr>
<tr>
<td><strong>agent</strong></td>
<td>The term used by Solaris to denote a cluster server. Also known as a logical server (HP TruCluster), a package (HP-UX), and a virtual server (Microsoft).</td>
</tr>
<tr>
<td><strong>annotation</strong></td>
<td>A comment that you associate with an archive save set to help identify that data later. Annotations are stored in the media index for ease of searching and are limited to 1,024 characters.</td>
</tr>
<tr>
<td><strong>archive</strong></td>
<td>The process by which NetWorker software backs up directories or files to an archive volume and then grooms them to free disk space. When data is archived, it is written to one or more storage volumes and then marked so that it is never subject to automatic recycling. You can delete the archived files from the client, thus freeing disk space. <strong>See also “grooming”.</strong></td>
</tr>
<tr>
<td><strong>archive clone pool</strong></td>
<td>A pool comprised exclusively of archive clone save sets.</td>
</tr>
<tr>
<td><strong>archive pool</strong></td>
<td>A volume “pool” comprised exclusively of archive save sets. Archived save sets are in a different format than regular backup save sets, and must be maintained on separate media.</td>
</tr>
<tr>
<td><strong>archive volume</strong></td>
<td>A tape or other storage medium used to store NetWorker archive data.</td>
</tr>
<tr>
<td><strong>ASM</strong></td>
<td>Application-specific module. An ASM is a program that, when used in a directive, specifies the way that a set of files or directories is to be backed up and recovered. For example, <strong>compressasm</strong> is a NetWorker directive used to compress and decompress files.</td>
</tr>
</tbody>
</table>
ASM specification

A directive that specifies how files or directories with a matching pattern are backed up. This specification appears in the format:

`[+] asm: argument`

For more information, refer to the `nsr_5` man page or the NetWorker Command Reference Guide.

attribute

A feature of a resource. It is a service or information that the “resource” provides.

authorization code

A code that is unique to your network that unlocks the NetWorker software for permanent use.

autochanger

A mechanism that uses a robotic arm to move media among various components located in a device, including slots, media drives, media access ports, and transports. Autochangers automate media loading and mounting functions during backup and recovery. The term autochanger refers to a variety of robotic libraries, including autoloader, “carousel”, datawheel, jukebox, library, and near-line storage.

Auto Media Management

A feature that enables the storage device controlled by the NetWorker server to automatically label, mount, and overwrite a volume it considers unlabeled. Volumes that are eligible for reuse are also automatically recycled.

alternate track

A track designated to contain data in place of a defective primary track. See Also See also primary track

actuator

A set of access arms and their attached read/write heads, which move as an independent component within a head and disk assembly (HDA).

adapter

Card that provides the physical interface between the director and disk devices (SCSI adapter), director and parallel channels (Bus & Tag adapter), director and serial channels (Serial adapter).

B

backup

The writing of saved data to a volume.

backup cycle

The period of time from one level full backup to the next level full backup.

backup group

See “group”.

backup level

See “level”.

Backup Operators group

A group of Microsoft Windows users who can log in to a domain from a computer or a server, back it up, and recover the data. Backup operators also can shut down servers or computers.

backup volume

A tape or other storage medium used to store NetWorker backup data, as opposed to an archive volume.

base enabler code

See “enabler code”.

bootstrap

A save set that is essential for the NetWorker disaster recovery procedures. The bootstrap is comprised of three components that reside on the NetWorker server: the “media database”, the “resource database”, and a “server index”.

browse policy

A policy that determines how long entries for backup data remain in the client file index.
cache
Random access electronic storage used to retain frequently used data for faster access by the channel.

carousel
A tray or tape cartridge that holds multiple backup volumes.

client
A computer that accesses the NetWorker server to back up or recover files. Clients may be workstations, computers, or fileservers.

client file index
A database of information maintained by the NetWorker server that tracks every database object, file, or "file system" backed up. The NetWorker server maintains a single client index file for each client computer.

client-initiated backup
See “manual backup”.

cloned
The NetWorker process used to make an exact copy of saved data (save sets). You can clone individual save sets or the entire contents of a backup volume. Cloning is different from a simple copy operation carried out on an operating system or hardware device. It is indexed and tracked by NetWorker software in both the “client file index” and the media database.

cloned pool
A pool of volumes comprised exclusively of cloned data. Three types of cloned pools can be used: backup clone, archive clone. Save sets of different types (for example, archive) cannot be intermixed on the same cloned volume.

cloned volume
A volume belonging to a cloned pool.

cluster
Two or more nodes that are connected and appear to network users as a single, highly available system. A highly available system allows the application services to continue despite most hardware or software failures.

connection port
The port NetWorker processes use to perform backup and recovery sessions through a firewall.

consolidate
The process of creating a complete backup of a save set by merging the most recent level 1 save set with its corresponding full level save set. For more information, refer to the nsrsse man page or the NetWorker Command Reference Guide.

continued save set
Data associated with a save set that is continued from a previous volume. Continued save sets are created by the backup server when large save sets are being backed up, cloned, or archived to multiple volumes.

cache slot
Unit of cache equivalent to one track.

channel director
The component in the Symmetrix subsystem that interfaces between the host channels and data storage. It transfers data between the channel and cache.

controller ID
Controller identification number of the director the disks are channeled to for EREP usage. There is only one controller ID for Symmetrix.

count-key-data (CKD)
A data recording format employing self-defining record formats in which each record is represented by a count area that identifies the record and specifies its format, an optional key area that may be used to identify the data area contents, and a data area that contains the user data for the record. CKD also can refer to a set of channel commands that are accepted by a device that employs the CKD recording format.
D

DASD Direct access storage device.
data availability Access to any and all user data by the application.
delayed fast write There is no room in cache for the data presented by the write operation.
device address The hexadecimal value that uniquely defines a physical I/O device on a channel path in an MVS environment. See also unit address
device number The value that logically identifies a disk device in a string.
device support facilities program (ICKDSF) A program used to initialize Symmetrix at installation and provide media maintenance.

Diagnostics System level tests or firmware designed to inspect, detect, and correct failing components. These tests are comprehensive and self-invoking.
director The component in the Symmetrix subsystem that allows Symmetrix to transfer data between the host channels and disk devices. See also channel director
disk director The component in the Symmetrix subsystem that interfaces between cache and the disk devices.
dual-initiator A Symmetrix feature that automatically creates a backup data path to the disk devices serviced directly by a disk director, if that disk director or the disk management hardware for those devices fails.
dynamic path reconnect (dpr) A function that allows disconnected I/O operations with Symmetrix to reconnect over any available channel path rather than be limited to the one on which the I/O operation was started. This function is available only on System 370/XA, System 370/ESA, and System 390/ESA systems.
dynamic sparing A Symmetrix feature that automatically transfers data from a failing disk device to an available spare disk device without affecting data availability. This feature supports all non-mirrored devices in the Symmetrix subsystem.
daemon A program that lies dormant waiting for a specified condition to occur.
datawheel See “autochanger”.

DDS Dynamic drive sharing, which allows NetWorker software to recognize shared drives.
device 1. A storage unit that reads from and writes to storage volumes (see volume). A storage unit can be a tape device, optical drive, “autochanger”, or file connected to the “server” or “storage node”.
2. When DDS is enabled, refers to the access path to the physical drive.

DFS Distributed File System root or child node. DFS is a Microsoft add-on that allows you to create a logical directory of shared directories that span multiple machines across a network.

DFS component 1. A namespace for files and DFS links, called a DFS root.
2. A connection to a shared file or folder, called a DFS child node.
**directed recovery** A recovery method used to recover data that originated on one computer and re-create it on another computer.

**directive** An instruction that directs the NetWorker software to take special actions on a given set of files for a specified client during a backup.

**domain controller** A Microsoft Windows computer that stores directory data and manages user interactions with a domain, including logon, authentication, directory searches, and access to other shared resources.

**drive** When DDS is enabled, refers to the physical backup object, such as a tape drive, disk, or file. See also “device”.

**EMC User SCSI (LUS)** A proprietary device driver that sends arbitrary SCSI commands to a library.

**enabler code** A special code provided by EMC that activates the software. The enabler code that unlocks the base features for software you purchase is referred to as a base enabler. Enabler codes for additional features or products (for example, autochanger support) are referred to as add-on enablers.

**exit code** An indicator that specifies whether a backup or recovery session succeeded. An exit code of zero (0) indicates the session completed successfully. A nonzero exit code indicates the session did not complete successfully.

**expiration date** The date when the volume changes from read/write to read-only.

**expired save set** A save set whose browse time has been reached; therefore, it can no longer be browsed. In addition, the save set has been removed from the client file index.

**EREP program** The program that formats and prepares reports from the data contained in the Error Recording Data Set (ERDS).

**ESCON** Enterprise Systems Connection.

**ESCON director** Device that provides a dynamic switching function and extended link path lengths (with XDF capability) when attaching an ESCON channel to a Symmetrix serial channel interface.

**file index** See “client file index”.

**file system**
1. A file tree that is on a specific disk partition or other mount point.
2. The entire set of all files.

**firewall** A system designed to prevent unauthorized access to or from a private network. All messages entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified security criteria. There are several types of firewall techniques. The NetWorker software supports client backups from computers that are protected by “packet filtering”.

*NetWorker 7.5 Disaster Recovery Guide*
fork A subprocess the NetWorker software creates to perform a requested operation. In instances where a command uses a parallelism value, NetWorker software creates multiple instances of that command. Each instance of the command is identical to the original command and is referred to as a subprocess. Once each subprocess is created, they are run simultaneously.

full backup See “level”.

fast write In Symmetrix, a write operation at cache speed that does not require immediate transfer of data to disk. The data is written directly to cache and is available for later destaging.

field replaceable unit (FRU) A component that is replaced or added by service personnel as a single entity.

frame Data packet format in an ESCON environment.

Fujitsu License Manager An application that manages the licenses for all Fujitsu Technology Solutions products and features.

G

grooming The NetWorker process of removing the original files from a local disk after a successful archive operation.

group A client or group of clients configured to start backing up files to the NetWorker server at a designated time of day.

gigabyte (GB) $10^9$ bytes.

H

head and disk assembly (HDA) A field replaceable unit in the Symmetrix subsystem containing the disk and actuator.

highly available system A system that allows the application services to continue despite a hardware or software failure. Each cluster node has its own IP address. Each cluster node also has private (local) resources or disks that are available only to that machine.

home address (HA) The first field on a CKD track that identifies the track and defines its operational status. The home address is written after the index point on each track.

hyper-volume extension The ability to define more than one logical volume on a single physical disk device making use of its full formatted capacity. These logical volumes are user-selectable in size. The minimum volume size is one cylinder and the maximum size depends on the disk device capacity and the emulation mode selected.

I

identifier (ID) A sequence of bits or characters that identifies a program, device, controller, or system.

IML Initial microcode program loading.

inactivity timeout An attribute that indicates the number of minutes NetWorker software waits before determining that a client is unavailable for backup.

incremental See “level”.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>index marker</td>
<td>Indicates the physical beginning and end of a track.</td>
</tr>
<tr>
<td>index point</td>
<td>The reference point on a disk surface that determines the start of a track.</td>
</tr>
<tr>
<td>INLINES</td>
<td>An EMC-provided host-based Cache Reporter utility for viewing short and long term cache statistics at the system console.</td>
</tr>
<tr>
<td>I/O device</td>
<td>An addressable input/output unit, such as a disk device.</td>
</tr>
<tr>
<td>jukebox</td>
<td>See “autochanger”.</td>
</tr>
<tr>
<td>kilobyte (K)</td>
<td>1024 bytes.</td>
</tr>
<tr>
<td>level</td>
<td>A measurement that determines how much data NetWorker software saves during a scheduled or manual backup.</td>
</tr>
<tr>
<td>library</td>
<td>See “autochanger”.</td>
</tr>
<tr>
<td>license enabler</td>
<td>The enabler code that enables you to run a feature or product.</td>
</tr>
<tr>
<td>local cluster client</td>
<td>A NetWorker client that is not permanently bound to a physical machine, but is instead managed by a cluster manager. It can be bound to more than one physical machine in the cluster and can own its own data disks. It is also referred to as a logical or virtual client.</td>
</tr>
<tr>
<td>local host</td>
<td>The node on which the client or server program is running.</td>
</tr>
<tr>
<td>logical server</td>
<td>The term used in conjunction with HP TruCluster to denote a cluster server. Also known as an agent (Sun), a package (HP-UX), and a virtual server (Microsoft).</td>
</tr>
<tr>
<td>LUS</td>
<td>See “EMC User SCSI (LUS)”</td>
</tr>
<tr>
<td>least recently used algorithm (LRU)</td>
<td>The algorithm used to identify and make available the cache space by removing the least recently used data.</td>
</tr>
<tr>
<td>logical volume</td>
<td>A user-defined storage device. In the Model 5200, the user can define a physical disk device as one or two logical volumes.</td>
</tr>
<tr>
<td>long miss</td>
<td>Requested data is not in cache and is not in the process of being fetched.</td>
</tr>
<tr>
<td>longitude redundancy code (LRC)</td>
<td>Exclusive OR (XOR) of the accumulated bytes in the data record.</td>
</tr>
</tbody>
</table>
M

megabyte (MB) \(10^6\) bytes.

mirroring The Symmetrix maintains two identical copies of a designated volume on separate disks. Each volume automatically updates during a write operation. If one disk device fails, Symmetrix automatically uses the other disk device.

mirrored pair A logical volume with all data recorded twice, once on each of two different physical devices.

manual backup A backup that a user requests from the client’s save program. The user specifies participating files, file systems, and directories. A manual backup does not generate a “bootstrap” save set.

media The physical storage medium to which backup data is written. NetWorker software supports tape, magnetic or optical disk, and file systems as backup media. See also “volume”.

media database A database that contains indexed entries about the storage volume location and the life cycle status of all data and volumes the NetWorker server manages. See also “volume”.

multiplexing A NetWorker feature that permits data from more than one save set to be simultaneously written to the same storage device.

N

NDMP Network Data Management Protocol. A storage management client/server protocol for enterprise-wide backup of network-attached storage. NetWorker software uses NDMP to provide connections to computers with NDMP data modules for tape operations, allowing a significant reduction in network traffic.

NDS partition An NDS partition defines the logical structure of directory data. NDS partitions allow distribution, where necessary, of the NDS database. They also improve network performance with multiple sites are connected by WAN links. Usually, a partition (or a physical copy of the partition known as a replica) is placed on a server that is physically close to the users of that partition's data.

near-line storage See “autochanger”.

NetWorker client See “client”.

NetWorker server See “server”.

NetWorker storage node See “storage node”.

NFS client A computer that can access files on a network file system (NFS) server.

NFS server A computer that contains exported file systems that NFS clients can access.

nonclone pool Pools that contain data that has not been cloned.

notification A message generated and sent to the NetWorker administrator about important NetWorker events.

Novell Directory Services partition See “NDS partition”.
online indexes  The databases located on the NetWorker server that contain all the information pertaining to the client backups ("client file index") and backup volumes ("media database").

operator  The person who monitors the server status, loads backup volumes into the server devices, and otherwise executes the day-to-day NetWorker tasks.

override  A NetWorker feature that allows you to configure a different backup level for a specific date listed in a Schedule resource.

package  The term used by HP-UX to denote a cluster server. Also known as an agent (Sun), logical server (HP TruCluster), and virtual server (Microsoft).

packet filtering  A method of firewall protection that looks at each packet entering or leaving the network and accepts or rejects it based on user-defined rules. See also "firewall".

parallelism  A NetWorker feature that enables the NetWorker server to either back up save sets from several clients or many save sets from one client at the same time. Parallelism is also available during recovers.

pathname  A set of instructions to the operating system for accessing a file. An absolute pathname tells how to find a file beginning at the root directory and working down the directory tree. A relative pathname tells how to find the file starting where you are now.

physical cluster client  A NetWorker client that is bound to a physical machine in the cluster and can represent its own resources (private or local). It also can be called the physical client.

physical host  Any one of the nodes (or machines) that forms the cluster.

delayed purge  The process of deleting all entries for files on the volume from the client file index, but allowing entries for the save sets to remain in the media database.

policy  A set of constraints that specify how long an entry can remain in a client’s online file index. When a policy expires, the save sets associated with that policy are marked recyclable. Each client resource uses two policies: a browse policy and a retention policy.

pool  A feature that enables you to sort backup data to selected volumes. A pool contains a collection of backup volumes to which specific data has been backed up.

probe  The process NetWorker software uses to determine the directories or files to back up on each client.

partitioned data set (PDS) assist  An IBM feature for 3990 Model 6 and 3990 Model 3 with Extended Platform units. PDS Assist improves performance on large, heavily-used partitioned data sets by modifying the directory search process.

physical ID  Physical identification number of the Symmetrix director for EREP usage. This value automatically increments by one for each director installed in Symmetrix. This number must be unique in the mainframe system. It should be an even number. This number is referred to as the SCU_ID.

primary track  The original track on which data is stored. See also alternate track.

promotion  The process of moving data from a track on the disk device to cache slot.
R

recover A recovery method that re-creates an image of the client file systems and database on the NetWorker server.

recyclable save set A save set whose browse and retention policies have been reached; therefore, the save set has been removed from the media database.

recyclable volume A volume whose data has passed both its browse and retention policies and is now available for relabeling and use by a NetWorker server or storage node.

Registry A database of configuration information central to Windows operations. It centralizes all Windows settings and provides security and control over system, security, and user account settings.

remote device A storage device that is attached to a NetWorker storage node.

RPC Remote Procedure Call. The protocol the NetWorker server uses to perform client requests over a network.

resource A component of the NetWorker software that describes the NetWorker server and its clients. Devices, schedules, clients, groups, and policies are examples of NetWorker resources. Each resource contains a list of attributes that define the parameters to use for the specific NetWorker resource.

resource database A database that contains information about each of the configured backup server’s resources.

resource owner The cluster (logical, not physical) host that owns the resource. If a resource (for example, a shared disk) is not owned by any virtual host, it is assumed to be owned by the local host (physical node) that hosts the resource.

retention policy A policy that determines how long save set entries are retained in the NetWorker server’s media database.

retrieve The process of locating and copying back files and directories that NetWorker software has archived.

retry mechanism The action NetWorker software performs when client operations fail. This situation might occur when the rate of transmission is either low or nonexistent. By using this mechanism, a previously failed operation might be more successful. Another common situation whereby a retry mechanism might succeed is when the client is in a reboot cycle.

root 1. (UNIX only) The UNIX superuser account (with user name “root” and user ID). By extension, the privileged system-maintenance login on any operating system.

2. (Windows and UNIX) The top node of the system directory structure; the home directory of the root user.

read hit Data requested by the read operation is in cache.

read miss Data requested by the read operation is not in cache.

record zero The first record after the home address.
**S**

**scrubbing**  The process of reading, checking the error correction bits, and writing corrected data back to the source.

**SCSI adapter**  Card in the Symmetrix subsystem that provides the physical interface between the disk director and the disk devices.

**SCU_ID**  For 3880 storage control emulations, this value uniquely identifies the storage director without respect to its selection address. It identifies to the host system, through the EREP, the director detecting the failing subsystem component. This value automatically increments by one for each director installed. The SCU_ID must be a unique number in the host system. It should be an even number and start on a zero boundary.

**short miss**  Requested data is not in cache, but is in the process of being fetched.

**SSID**  For 3990 storage control emulations, this value identifies the physical components of a logical DASD subsystem. The SSID must be a unique number in the host system. It should be an even number and start on a zero boundary.

**stage**  The process of writing data from a disk device to cache.

**storage control unit**  The component in the Symmetrix subsystem that connects Symmetrix to the host channels. It performs channel commands and communicates with the disk directors and cache. See also *channel director*

**string**  A series of connected disk devices sharing the same disk director.

**save set**  A group of files or a file system from a single client computer backed up onto storage media.

**save set consolidation**  The process that merges a level 1 backup with the last full backup of a save set to create a new full backup. See also “level”.

**save set ID**  An internal identification number that NetWorker software assigns to a save set.

**save set recover**  The NetWorker attribute that indicates whether a given save set is browsable, recoverable, or recyclable. The save set status also indicates whether the save set has been successfully backed up.

**save set status**  The NetWorker attribute that indicates whether a given save set is browsable, recoverable, or recyclable. The save set status also indicates whether the save set has been successfully backed up.

**save stream**  The data and save set information being written to a storage volume during a backup. A save stream originates from a single save set.

**server**  The computer on a network that runs the NetWorker server software, contains the online indexes, and provides backup and recovery services to the clients and storage nodes on the same network.

**server index**  A database containing information about the server's files that have been backed up during scheduled backups. Also known as the server’s “client file index”.

**service port**  The port used by a server or storage node to listen for backup and recovery requests from clients through a firewall.

**shared disk**  The storage disk that is connected between multiple nodes in the cluster.
shell prompt  A cue for input in a shell window where you enter a command.

siro  A repository for holding hundreds or thousands of volumes. Silo volumes are identified by barcodes, not by slot numbers.

skip  A backup level in which designated files are not backed up. See also “level”.

SMIT  System Management Interface Utility, which is a utility for managing and maintaining the AIX operating system configuration. The SMIT utility can be run in either a graphical or ASCII text mode. For disaster recoveries, SMIT is typically run in ASCII text mode.

SMS  System management software, which is a Microsoft-based software installation system that allows the wide-scale, automatic installation of software products on clients from a single remote server.

SNMP  Simple Network Management Protocol, which is a protocol that defines the communication between a manager (sometimes called a monitor or management station) and an object (the item being managed). NetWorker software uses SNMP to send messages to the administrator about NetWorker events.

ssid  See “save set ID”.

staging  The process of moving data from one storage medium to another, less costly medium, and later removing the data from its original location.

stand-alone  In a cluster environment, if the NetWorker.clustersvr file is missing at the binary location, the NetWorker server will start in noncluster mode, also called stand-alone mode. The stand-alone mode is sometimes referred to as the server backing up itself.

stand-alone device  A “storage device” that contains a single drive for backing up data.

storage device  The hardware that reads and writes data during backup, recovery, or other NetWorker operations.

storage node  A storage device physically attached to another computer whose backup operations are administered from the controlling NetWorker server.

System Reference Manual (SRM) console  The HP TruCluster utility used to manage cluster nodes.

U

unit address  The hexadecimal value that uniquely defines a physical I/O device on a channel path in an MVS environment. See also device address

user groups  In the NetWorker software, refers to configuration resources that are used to assign users to access control groups and to configure the privileges associated with those groups.

V

versions  The date-stamped collection of available backups for any single file.

virtual cluster client  A NetWorker client that is not permanently bound to a physical machine, but is instead managed by a cluster manager. It can be bound to more than one physical machine in the cluster and can own its own data disks. It is also referred to as a logical cluster client or a virtual client.
**virtual server**  The term used by Microsoft to denote a cluster server. Also known as an agent (Sun), a logical server (HP TruCluster), and a package (HP-UX).

**volume**  A unit of storage media, such as a magnetic tape, an optical disk, or a file. A storage device reads from and writes to volumes, which can be physical units (for example, a labeled tape cartridge) or logical units (for example, optical media can store multiple volumes on a single physical platter).

**volume ID**  The internal identification assigned to a backup volume by NetWorker software.

**volume name**  The name you assign to a backup volume when it is labeled.

**volume pool**  See “pool”.

**volume**  A general term referring to a storage device. In the Symmetrix subsystem, a volume corresponds to single disk device.

**W**

**write hit**  There is room in cache for the data presented by the write operation.

**write miss**  There is no room in cache for the data presented by the write operation.
A
application data
  recovering on NetWorker client
    UNIX 85, 99
    Windows 91
  recovering on storage node
    UNIX 87
    Windows 91
autochanger
  UNIX
    resetting 60
  Windows
    removable storage enabled, restoring with 75
automated system recovery (ASR) on Windows 94
B
backup
  importance of scheduling 12
  testing
    UNIX 88, 100
    Windows 75, 93
bootstrap
  locating save set ID of
    Windows 61
  recovering
    Windows 62
browse policy, Windows 59
C
client
  See NetWorker client
client file indexes
  recovering
    Windows 74
commands
  LINUX, ielem 60
  Mac OS X, recover 99
NetWare
  dsrepair 77, 78, 80, 82
  install 79, 81
  load NETUTIL 64
  LOAD TSA 79, 80, 82
  ndir 77, 80, 82
  netadmin 78
  nwadmin 77, 78, 80
  nwconfig 79, 81
  nwdown 66
  partmgr 78
  rights /T /S 82
UNIX
  inquire 62
  mminfo -avot 85, 87, 99
  mminfo -mv 61
  mmrecov 65
  nsr_shutdown -a 58, 65
  nsradmin 86
  nsrcd 59, 65
  nsrexecl 59, 65
  nsrjb -HE 65
  nsrjb -l 60
  nsrjb -lnv -S-f 62
  nsrjb -lv 65
  nsrjb -vHE 60
  nwhrecovery 85, 87
  scanner -B 62
  sjiielm 60
Windows
  mminfo -mv 54, 95
Windows
  mminfo -s -mv 90
  mmrecov 59, 62, 66, 75
  nsrck 62
  nsrck -L7 74
  nsrjb -lv -S 61
  scanner -B 62
configuration files
  recovering for NetWorker server
    UNIX 65
    Windows 66
Console software, recovering 104
D
daemons, shutting down NetWorker 58
database
  recovering 104
database, resource and media
  bootstrap for
    Windows 61, 62
disaster
  preparing for 12
  recovery prerequisites 12
disaster recovery 104
dsrepair, NetWare 77, 78, 80, 82
Dynamic Host Configuration Protocol (DHCP)
database 97
E
electronic access to Fujitsu information 7
end user data
  See user data
F
  file, legatomm 77
  firewall support 111
  Fujitsu Siemens
  service 7
  Fujitsu Technology Solutions
  support 7
G
gathering key information before a disaster 12
I
  ilem, Linux 60
information before a disaster, gathering key 12
inquire, UNIX 62
install command, NetWare 79, 81
installing
  NetWorker client
    UNIX 85, 99
  NetWorker server
    UNIX 58
  NetWorker storage node
    UNIX 87
  operating system
    Windows 56
IntraNetWare SYS Volume, recovering 80
inventory autochanger
  UNIX 60
J
jukebox
  See autochanger
K
key information before a disaster, gathering 12
L
  legatomm file 77
  limitations, Windows OEM recovery CD 95
  load NETUTIL, NetWare 64
  LOAD TSA, NetWare 79, 80, 82
M
media database
  locating bootstrap for
    Windows 61
Microsoft automated system recovery (ASR) 94
mminfo -avot, UNIX 85, 87, 99
mminfo -mv, UNIX 61
mminfo -mv, Windows 54, 95
mminfo -s -mv, Windows 90
mmrecov, UNIX 65
mmrecov, Windows 59, 62, 66, 75
N
  ndir, NetWare 77, 80, 82
  NDS partition, recovering replicated 78
netadmin, NetWare 78
NetWare
  legatomm file 77
  recovering
    IntraNetWare SYS volume 80
    NetWare 4.10 SYS volume 78
    NetWare 4.11 SYS volume 80
    NetWare 5.0 SYS volume 80
NetWorker client
  installing
    UNIX 85, 99
  recovering
    UNIX 84
    Windows 89
NetWorker server
installing
  UNIX 58
locating bootstrap save set ID
  Windows 61
recovering configuration files
  UNIX 65
testing backup and recovery
  NetWare 77
  Windows 75
NetWorker storage node
installing
  UNIX 87
recovering
  UNIX 84
  Windows 89
NetWorker Utilities program, NetWare 64
nsr_shutdown -a, UNIX 58, 65
nsradmin, UNIX 86
nsrk
  -L7
    Windows 74
    Windows 62
nsrd, UNIX 59, 65
nsrexced, UNIX 59, 65
nsrjb
  -HE option
    UNIX 65
  -l option
    UNIX 60
  -lv -S -f options
    UNIX 62
  -lv option
    UNIX 65
  -lv -S option
    Windows 61
  -vHE option
    UNIX 60
nwadmin, NetWare 77, 78, 80
nwconfig, NetWare 79, 81
nwdown, NetWare 66
nwrecover, UNIX 85, 87, 99
O
OEM recovery CD limitations 95
operating system
  Windows
    installing 56
P
packet-filtering, firewalls 111
partition, recovering a replicated NDS partition 78
partmgr, NetWare 78
policies
  browse, Windows 59
  retention, Windows 59
preparing for a disaster 12
prerequisites
  automated system recovery, Windows 94, 95
NetWorker client recovery
    Mac OS X 98
    Windows 89, 90
NetWorker storage node recovery
    UNIX 84
    Windows 89, 90
summary of 12
program, NetWorker Utilities for NetWare 64
R
recovering
  Console 104
  database 104
recovering bootstrap
  Windows 62
recovering configuration files
  NetWorker server
    UNIX 65
    Windows 66
recovering IntraNetWare SYS volume 80
recovering NetWare 4.10 SYS volume 78
recovering NetWare 4.11 SYS volume 80
recovering NetWare 5.0 SYS volume 80
recovering NetWorker client
    UNIX 84
    Windows 89
recovering NetWorker storage node
    UNIX 84
    Windows 89
recovery volume mount points, Windows 91
recoverpsm 104, 105
recovery
testing
    UNIX 88, 100
    Windows 75, 93, 97
recovery limitations, Windows OEM CD 95
recovery prerequisites 12
recovery, Microsoft automated 94
regular backups, importance of 12
removable storage autochanger, restoring 75
renaming NetWorker configuration files
  UNIX 65
resetting autochanger
  UNIX 60
resource database
  locating bootstrap for
    Windows 61
retention policy, Windows 59
rights /T /S, NetWare 82
S
scanner
  -B option
    UNIX 62
    Windows 62
scheduled backups, importance of 12
server
  installing NetWorker
    UNIX 58
  shutdown NetWorker, UNIX 58
service 7
service for customers 7
setting
  browse policy, Windows 59
  retention policy, Windows 59
shutdown NetWorker server
  UNIX 58
sjieIm
  UNIX 60
storage node
  See NetWorker storage node
support 7
SYS volume, recovering
  IntraNetWare 80
  NetWare 4.10 78
  NetWare 4.11 80
  NetWare 5.0 80
system recovery, Microsoft automated 94
T
testing backup and recovery
  NetWare 77
  UNIX 88, 100
  Windows 75, 93
U
UNIX
  recovering
    NetWorker client 84
    NetWorker storage node 84
  renaming NetWorker server configuration files 65
user data
  recovering on NetWorker client
    Mac OS X 99
    UNIX 85
    Windows 91
  recovering on storage node
    UNIX 87
    Windows 91
Utilities program, NetWare 64
W
web address 7
Windows 91
  automated system recovery (ASR) 94
  installing operating system 56
  recovering
    NetWorker client 89
    NetWorker storage node 89
    volume mount points 91
  setting
    browse policy 59
    retention policy 59
Windows Internet Naming Service (WINS) database 97